Engineering particle trajectories in microfluidic flows using speckle light fields

dc.citation.volumeNumber9164en_US
dc.contributor.authorVolpe, G.en_US
dc.contributor.authorVolpe, Giovannien_US
dc.contributor.authorGigan, S.en_US
dc.coverage.spatialSan Diego, California, United Statesen_US
dc.date.accessioned2016-02-08T11:39:32Z
dc.date.available2016-02-08T11:39:32Z
dc.date.issued2014en_US
dc.departmentDepartment of Physicsen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.descriptionDate of Conference: Proceedings of SPIE, Optical Trapping and Optical Micromanipulation XIen_US
dc.descriptionDate of Conference: 17–21 August 2014en_US
dc.description.abstractOptical tweezers have been widely used in physics, chemistry and biology to manipulate and trap microscopic and nanoscopic objects. Current optical trapping techniques rely on carefully engineered setups to manipulate nanoscopic and microscopic objects at the focus of a laser beam. Since the quality of the trapping is strongly dependent on the focus quality, these systems have to be very carefully aligned and optimized, thus limiting their practical applicability in complex environments. One major challenge for current optical manipulation techniques is the light scattering occurring in optically complex media, such as biological tissues, turbid liquids and rough surfaces, which give rise to apparently random light fields known as speckles. Here, we discuss an experimental implementation to perform optical manipulation based on speckles. In particular, we show how to take advantage of the statistical properties of speckle patterns in order to realize a setup based on a multimode optical fiber to perform basic optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these "speckle optical tweezers" will greatly broaden the perspectives of optical manipulation for real-life applications. © 2014 SPIE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T11:39:32Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014en_US
dc.identifier.doi10.1117/12.2061040en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/11693/26919
dc.language.isoEnglishen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttps://doi.org/10.1117/12.2061040en_US
dc.source.titleProceedings of SPIEen_US
dc.subjectBrownian motionen_US
dc.subjectOptical forcesen_US
dc.subjectBrownian movementen_US
dc.subjectLaser beamsen_US
dc.subjectLight scatteringen_US
dc.subjectMicromanipulatorsen_US
dc.subjectMultimode fibersen_US
dc.subjectOptical fibersen_US
dc.subjectOptical tweezersen_US
dc.subjectLight fieldsen_US
dc.subjectMultimode optical fibersen_US
dc.subjectOptical forceen_US
dc.subjectOptical manipulationen_US
dc.subjectOptical manipulation techniqueen_US
dc.subjectParticle trajectoriesen_US
dc.subjectReal-life applicationsen_US
dc.subjectStatistical propertiesen_US
dc.subjectSpeckleen_US
dc.titleEngineering particle trajectories in microfluidic flows using speckle light fieldsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Engineering particle trajectories in microfluidic flows using speckle light fields.pdf
Size:
552.32 KB
Format:
Adobe Portable Document Format
Description:
Full printable version