The value of multi-stage stochastic programming in risk-averse unit commitment under uncertainty

buir.contributor.authorÇavuş, Özlem
buir.contributor.authorAktürk, M. Selim
buir.contributor.authorMahmutoğulları, Ali İrfan
dc.citation.epage3676en_US
dc.citation.issueNumber5en_US
dc.citation.spage3667en_US
dc.citation.volumeNumber34en_US
dc.contributor.authorMahmutoğulları, Ali İrfanen_US
dc.contributor.authorAhmed, S.en_US
dc.contributor.authorÇavuş, Özlemen_US
dc.contributor.authorAktürk, M. Selimen_US
dc.date.accessioned2020-02-04T13:49:29Z
dc.date.available2020-02-04T13:49:29Z
dc.date.issued2019
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractDay-ahead scheduling of electricity generation or unit commitment is an important and challenging optimization problem in power systems. Variability in net load arising from the increasing penetration of renewable technologies has motivated study of various classes of stochastic unit commitment models. In two-stage models, the generation schedule for the entire day is fixed while the dispatch is adapted to the uncertainty, whereas in multi-stage models the generation schedule is also allowed to dynamically adapt to the uncertainty realization. Multi-stage models provide more flexibility in the generation schedule; however, they require significantly higher computational effort than two-stage models. To justify this additional computational effort, we provide theoretical and empirical analyses of the value of multi-stage solution for risk-averse multi-stage stochastic unit commitment models. The value of multi-stage solution measures the relative advantage of multi-stage solutions over their two-stage counterparts. Our results indicate that, for unit commitment models, the value of multi-stage solution increases with the level of uncertainty and number of periods, and decreases with the degree of risk aversion of the decision maker.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2020-02-04T13:49:29Z No. of bitstreams: 1 The_Value_of_Multi-Stage_Stochastic_Programming_in_Risk-Averse_Unit_Commitment_under_Uncertainty.pdf: 987174 bytes, checksum: ced29d9a3cdb395e8c11afbf824bf405 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-04T13:49:29Z (GMT). No. of bitstreams: 1 The_Value_of_Multi-Stage_Stochastic_Programming_in_Risk-Averse_Unit_Commitment_under_Uncertainty.pdf: 987174 bytes, checksum: ced29d9a3cdb395e8c11afbf824bf405 (MD5) Previous issue date: 2019-09en
dc.identifier.doi10.1109/TPWRS.2019.2902511en_US
dc.identifier.eissn1558-0679
dc.identifier.issn0885-8950
dc.identifier.urihttp://hdl.handle.net/11693/53060
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/TPWRS.2019.2902511en_US
dc.source.titleIEEE Transactions on Power Systemsen_US
dc.subjectUnit commitmenten_US
dc.subjectRisk-averse optimizationen_US
dc.subjectStochastic programmingen_US
dc.titleThe value of multi-stage stochastic programming in risk-averse unit commitment under uncertaintyen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Value_of_Multi-Stage_Stochastic_Programming_in_Risk-Averse_Unit_Commitment_under_Uncertainty.pdf
Size:
966.07 KB
Format:
Adobe Portable Document Format
Description: