About curvature, conformal metrics and warped products

dc.citation.epage13930en_US
dc.citation.issueNumber46en_US
dc.citation.spage13907en_US
dc.citation.volumeNumber40en_US
dc.contributor.authorDobarro, F.en_US
dc.contributor.authorÜnal, B.en_US
dc.date.accessioned2016-02-08T10:12:16Z
dc.date.available2016-02-08T10:12:16Z
dc.date.issued2007en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe consider the curvature of a family of warped products of two pseduo-Riemannian manifolds (B, gB) and (F, gF) furnished with metrics of the form c2gB ⊕ w2g F and, in particular, of the type w2μgB ⊕ w2gF, where c, w:B → (0, ∞) are smooth functions and μ is a real parameter. We obtain suitable expressions for the Ricci tensor and scalar curvature of such products that allow us to establish results about the existence of Einstein or constant scalar curvature structures in these categories. If (B, gB) is Riemannian, the latter question involves nonlinear elliptic partial differential equations with concave-convex nonlinearities and singular partial differential equations of the Lichnerowicz-York-type among others. © 2007 IOP Publishing Ltd.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:12:16Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2007en
dc.identifier.doi10.1088/1751-8113/40/46/006en_US
dc.identifier.eissn1751-8121
dc.identifier.issn1751-8113
dc.identifier.urihttp://hdl.handle.net/11693/23331
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1751-8113/40/46/006en_US
dc.source.titleJournal of Physics A : Mathematical and Theoreticalen_US
dc.titleAbout curvature, conformal metrics and warped productsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
About_Curvature_Conformal_Metrics_and_Warped_Products.pdf
Size:
586.9 KB
Format:
Adobe Portable Document Format
Description:
Full printable version