Scratch-pad memory based custom processor design for graph applications

Date

2020-09

Editor(s)

Advisor

Öztürk, Özcan

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
50
downloads

Series

Abstract

As more and more domains have started to process ever-growing graphs, the importance of graph analytics applications became more apparent. However, general-purpose processors are challenged to deal with the large memory footprint and the associated random memory accesses in graph applications, directing researchers towards domain-specific solutions. In this dissertation, we present a custom RISC-V graph processor that tries to increase the performance of graph applications by reducing the memory accesses. The novelty of the graph processor lies in the design of our software-controlled scratch-pad memories: Edge ScratchPad (ESP), Vertex Scratch-Pad (VSP), and Global Scratch-Pad (GSP). While ESP is preloaded with the edge data in parallel with the execution, VSP relieves the vertex traffic by reducing the conflicts caused by the vertex-related memory accesses. GSP takes over the load of the rest of the memory accesses as these three SPMs replace the conventional caches found in general-purpose systems. For the software to control this new functionality embedded in the graph processor, we extended RISC-V instruction set architecture with custom SPM-related instructions. We provided compiler support for the instructions and we modified the widely used PageRank, Single-Source Shortest Path, and Breadth-First Search algorithms in graph processor fashion to demonstrate the software-hardware interaction needed for the design. The experimental results on these applications show that the graph processor makes 18% to 72% less datapath-blocking memory accesses compared to a general-purpose processor based on the same RISC-V core.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type