Non-stationary Markov chains

buir.advisorKerimov, Azer
dc.contributor.authorMallak, Saed
dc.date.accessioned2016-01-08T20:13:33Z
dc.date.available2016-01-08T20:13:33Z
dc.date.issued1996
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references leaves leaf 29en_US
dc.description.abstractIn thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination of the elements of this sequence is again Ergodic (under some condition if the state space is infinite). We also proved that the limit of the combination of an arbitrary sequence of Markov chains on a finite state space is Weak Ergodic if it satisfies some condition. Under the same condition, the limit of the combination of a doubly stochastic sequence of Markov chains is Ergodic.en_US
dc.description.statementofresponsibilityMallak, Saeden_US
dc.format.extentvi, 29 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/17805
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMarkov chainen_US
dc.subjectStochastiicen_US
dc.subjectDoubly stochasticen_US
dc.subjectIrreducibleen_US
dc.subjectAperiodic matrixen_US
dc.subjectPersistenten_US
dc.subjectTransienten_US
dc.subjectErgodicen_US
dc.subjectErgodic Theoremen_US
dc.subject.lccQA274.7 .M35 1996en_US
dc.subject.lcshMarkov processes.en_US
dc.subject.lcshErgodic theory.en_US
dc.subject.lcshLimit theorems (Probability theory).en_US
dc.titleNon-stationary Markov chainsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B034975.pdf
Size:
788.2 KB
Format:
Adobe Portable Document Format
Description:
Full printable version