On two equivalent dilation theorems in VH-spaces

dc.citation.epage650en_US
dc.citation.issueNumber3en_US
dc.citation.spage625en_US
dc.citation.volumeNumber6en_US
dc.contributor.authorGheondea, A.en_US
dc.contributor.authorUgurcan, B. E.en_US
dc.date.accessioned2016-02-08T09:46:31Z
dc.date.available2016-02-08T09:46:31Z
dc.date.issued2012en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe prove that a generalized version, essentially obtained by R. M. Loynes, of the B. Sz.-Nagy's Dilation Theorem for B*(H)-valued (here H is a VH-space in the sense of Loynes) positive semidefinite maps on *-semigroups is equivalent with a generalized version of the W. F. Stinespring's Dilation Theorem for B*(H)-valued completely positive linear maps on B*-algebras. This equivalence result is a generalization of a theorem of F. H. Szafraniec, originally proved for the case of operator valued maps (that is, when H is a Hilbert space). © 2011 Springer Basel AG.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:46:31Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1007/s11785-011-0191-9en_US
dc.identifier.eissn1661-8262
dc.identifier.issn1661-8254
dc.identifier.urihttp://hdl.handle.net/11693/21449
dc.language.isoEnglishen_US
dc.publisherBirkhaeuser Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11785-011-0191-9en_US
dc.source.titleComplex Analysis and Operator Theoryen_US
dc.subjectOperator Versusen_US
dc.subjectPositive Semidefinite Complexen_US
dc.subjectComplex Vector Spaceen_US
dc.subjectCompact Hausdorff Spaceen_US
dc.subjectBoundedness Conditionen_US
dc.titleOn two equivalent dilation theorems in VH-spacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On Two Equivalent Dilation Theorems in VH-Spaces.pdf
Size:
333.18 KB
Format:
Adobe Portable Document Format
Description:
Full printable version