Weingarten surfaces arising from soliton theory

buir.advisorGürses, Metin
dc.contributor.authorCeyhan, Özgür
dc.date.accessioned2016-01-08T20:16:46Z
dc.date.available2016-01-08T20:16:46Z
dc.date.issued1999
dc.descriptionAnkara : Department of Mathematics and Institute of Engineering and Sciences, Bilkent University, 1999.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 1999.en_US
dc.descriptionIncludes bibliographical references leaves 43-45.en_US
dc.description.abstractIn this work we presented a method for constructing surfaces in associated with the symmetries of Gauss-Mainardi-Codazzi equations. We show that among these surfaces the sphere has a unique role. Under constant gauge transformations all integrable equations are mapped to a sphere. Furthermore we prove that all compact surfaces generated by symmetries of the sine-Gordon equation are homeomorphic to sphere. We also construct some Weingarten surfaces arising from the deformations of sine-Gordon, sinh-Gordon, nonlinear Schrödinger and modified Korteweg-de Vries equations.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T20:16:46Z (GMT). No. of bitstreams: 1 1.pdf: 78510 bytes, checksum: d85492f20c2362aa2bcf4aad49380397 (MD5)en
dc.description.statementofresponsibilityCeyhan, Özgüren_US
dc.format.extentviii, 45 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/18161
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSolitonsen_US
dc.subjectintegrable surfacesen_US
dc.subjectWeingarten surfacesen_US
dc.subject.lccQC174.26.W28 C49 1999en_US
dc.subject.lcshSolitons--Mathematics.en_US
dc.subject.lcshDifferential equations, Nonlinear--Numerical solitons.en_US
dc.subject.lcshGeometry, Algebraic.en_US
dc.subject.lcshMathematical solitons.en_US
dc.titleWeingarten surfaces arising from soliton theoryen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B049045.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Full printable version