Extensions of strongly π-regular rings

dc.citation.epage565en_US
dc.citation.issueNumber2en_US
dc.citation.spage555en_US
dc.citation.volumeNumber51en_US
dc.contributor.authorChen, H.en_US
dc.contributor.authorKose, H.en_US
dc.contributor.authorKurtulmaz, Y.en_US
dc.date.accessioned2016-02-08T10:59:09Z
dc.date.available2016-02-08T10:59:09Z
dc.date.issued2014en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractAn ideal I of a ring R is strongly π -regular if for any x ∈ I there exist n ∈ ℕ and y ∈ I such that xn = xn+1y. We prove that every strongly π -regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any x ∈ I there exist two distinct m, n ∈ N such that xm = xn. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly π -regular and for any u ∈ U(I), u-1 ∈ ℤ[u]. © 2014 Korean Mathematical Society.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:59:09Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014en
dc.identifier.doi10.4134/BKMS.2014.51.2.555en_US
dc.identifier.issn1015-8634
dc.identifier.urihttp://hdl.handle.net/11693/26391
dc.language.isoEnglishen_US
dc.publisherKorean Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.4134/BKMS.2014.51.2.555en_US
dc.source.titleBulletin of the Korean Mathematical Societyen_US
dc.subjectB-idealen_US
dc.subjectPeriodic idealen_US
dc.subjectStrongly π-regular idealen_US
dc.titleExtensions of strongly π-regular ringsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Extensions of strongly π regular rings.pdf
Size:
150.68 KB
Format:
Adobe Portable Document Format
Description:
Full printable version