Extensions of strongly π-regular rings
dc.citation.epage | 565 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 555 | en_US |
dc.citation.volumeNumber | 51 | en_US |
dc.contributor.author | Chen, H. | en_US |
dc.contributor.author | Kose, H. | en_US |
dc.contributor.author | Kurtulmaz, Y. | en_US |
dc.date.accessioned | 2016-02-08T10:59:09Z | |
dc.date.available | 2016-02-08T10:59:09Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | An ideal I of a ring R is strongly π -regular if for any x ∈ I there exist n ∈ ℕ and y ∈ I such that xn = xn+1y. We prove that every strongly π -regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any x ∈ I there exist two distinct m, n ∈ N such that xm = xn. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly π -regular and for any u ∈ U(I), u-1 ∈ ℤ[u]. © 2014 Korean Mathematical Society. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:59:09Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.4134/BKMS.2014.51.2.555 | en_US |
dc.identifier.issn | 1015-8634 | |
dc.identifier.uri | http://hdl.handle.net/11693/26391 | |
dc.language.iso | English | en_US |
dc.publisher | Korean Mathematical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.4134/BKMS.2014.51.2.555 | en_US |
dc.source.title | Bulletin of the Korean Mathematical Society | en_US |
dc.subject | B-ideal | en_US |
dc.subject | Periodic ideal | en_US |
dc.subject | Strongly π-regular ideal | en_US |
dc.title | Extensions of strongly π-regular rings | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Extensions of strongly π regular rings.pdf
- Size:
- 150.68 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version