On a Problem of A. Eremenko

dc.citation.epage282en_US
dc.citation.issueNumber2en_US
dc.citation.spage275en_US
dc.citation.volumeNumber4en_US
dc.contributor.authorOstrovskii, I. V.en_US
dc.date.accessioned2019-01-31T15:49:46Z
dc.date.available2019-01-31T15:49:46Z
dc.date.issued2005-05en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet Pmn, 0 < m < n− 1, be a polynomial formed by the first m terms of the expansion of (1 + z)n according to the binomial formula. We show that, if m, n→∞ in such a way that limm,n→∞ m/n = α ∈ (0, 1), then the zeros of Pmn tend to a curve which can be explicitly described.en_US
dc.description.provenanceSubmitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2019-01-31T15:49:46Z No. of bitstreams: 1 On_a_Problem_of_A_Eremenko.pdf: 149247 bytes, checksum: b2492a92bc27ffc8890984a120db9ac4 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-01-31T15:49:46Z (GMT). No. of bitstreams: 1 On_a_Problem_of_A_Eremenko.pdf: 149247 bytes, checksum: b2492a92bc27ffc8890984a120db9ac4 (MD5) Previous issue date: 2005-05en
dc.identifier.eissn2195-3724
dc.identifier.issn1617-9447
dc.identifier.urihttp://hdl.handle.net/11693/48645
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.source.titleComputational Methods and Function Theoryen_US
dc.subjectAsymptotic formulaen_US
dc.subjectConformal mappingen_US
dc.subjectPolynomialen_US
dc.subjectSubharmonic functionen_US
dc.subjectSzego’s methoden_US
dc.subjectUnivalent functionen_US
dc.subjectZerosen_US
dc.titleOn a Problem of A. Eremenkoen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_a_Problem_of_A_Eremenko.pdf
Size:
145.75 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: