On a Problem of A. Eremenko
dc.citation.epage | 282 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 275 | en_US |
dc.citation.volumeNumber | 4 | en_US |
dc.contributor.author | Ostrovskii, I. V. | en_US |
dc.date.accessioned | 2019-01-31T15:49:46Z | |
dc.date.available | 2019-01-31T15:49:46Z | |
dc.date.issued | 2005-05 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let Pmn, 0 < m < n− 1, be a polynomial formed by the first m terms of the expansion of (1 + z)n according to the binomial formula. We show that, if m, n→∞ in such a way that limm,n→∞ m/n = α ∈ (0, 1), then the zeros of Pmn tend to a curve which can be explicitly described. | en_US |
dc.description.provenance | Submitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2019-01-31T15:49:46Z No. of bitstreams: 1 On_a_Problem_of_A_Eremenko.pdf: 149247 bytes, checksum: b2492a92bc27ffc8890984a120db9ac4 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-01-31T15:49:46Z (GMT). No. of bitstreams: 1 On_a_Problem_of_A_Eremenko.pdf: 149247 bytes, checksum: b2492a92bc27ffc8890984a120db9ac4 (MD5) Previous issue date: 2005-05 | en |
dc.identifier.eissn | 2195-3724 | |
dc.identifier.issn | 1617-9447 | |
dc.identifier.uri | http://hdl.handle.net/11693/48645 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.source.title | Computational Methods and Function Theory | en_US |
dc.subject | Asymptotic formula | en_US |
dc.subject | Conformal mapping | en_US |
dc.subject | Polynomial | en_US |
dc.subject | Subharmonic function | en_US |
dc.subject | Szego’s method | en_US |
dc.subject | Univalent function | en_US |
dc.subject | Zeros | en_US |
dc.title | On a Problem of A. Eremenko | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_a_Problem_of_A_Eremenko.pdf
- Size:
- 145.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: