First-principles investigation of graphitic nanostructures

Date

2013

Editor(s)

Advisor

Gülseren, Oğuz

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
6
views
20
downloads

Series

Abstract

In this thesis, first-principles investigations of several graphene related nanosystems based on density functional theory are presented. First, the electronic structure of several graphene nano-ribbons both in 1D and 0D (up to systems with more than 1000 atoms) including all types (armchair, zigzag and chiral) are discussed using tight binding calculations. We observed that the band gap of the ribbons depend both on the length of the ribbon and the angle of chirality. Second, the effect of phosphorus and sulfur during the growth of carbon nanotubes is investigated from ab-initio density functional theory based calculations. To this end, we present the binding chemistry of phosphorus and sulfur atoms on graphene with and without vacancies and kink like defect structures. Consequently, the difference between the bindings of these two atoms is discussed in order to understand the reason behind their effects on the growth mechanism. The details of the phosphorus or sulfur binding are important in order to understand the occurrence of Y-junctions and kinks in carbon nanotubes as well. Third, we focus on the interaction of bilayer graphite and multi-walled carbon nanotubes with the Li atom since these materials are prime candidates for the electrodes for battery applications. The need for rechargeable batteries with high capacity increased enormously by the invention of electronic devices like cell phones or MP3 players. Hence, there is a huge effort to develop and improve Li-ion batteries. Therefore, we have investigated interaction of Li with graphene and Li intercalation to bilayer graphene and multi-walled carbon nanotubes from planewave pseudo potential calculations. Finally, super-periodic graphitic structures observed through scanning tunnelling microscope are described and investigated from density functional calculations. The difference between the observed and actual periodicity and the occurrence of the so-called Moire patterns are explained in terms of geometrical calculations and the charge density of these systems.

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)