On code design for joint energy and information transfer

Date
2016
Authors
Dabirnia M.
Duman, T. M.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Communications
Print ISSN
0090-6778
Electronic ISSN
Publisher
Institute of Electrical and Electronics Engineers Inc.
Volume
64
Issue
6
Pages
2677 - 2688
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Harvesting energy from radio frequency signals along with transmitting data through them is appealing for different wireless communication scenarios, such as radio frequency identification (RFID) systems and implantable devices. In this paper, we propose a technique to design nonlinear codes for the use in such systems taking into account both energy transmission and error rate requirements. In particular, we propose using concatenation of a nonlinear trellis code (NLTC) with an outer low-density parity-check (LDPC) code. We design the NLTC based on maximization of its free distance. We give necessary and sufficient conditions for its catastrophicity; in order to avoid catastrophic codes, we connect each designed NLTC to a corresponding linear convolutional code allowing for the use of simpler conditions for verification. Furthermore, we use EXIT charts to design the outer LDPC code while fixing the inner NLTC. Via examples, we demonstrate that our designed codes operate at ∼ 0.8 dB away from the information theoretic limits, and they outperform both regular LDPC codes and optimized irregular LDPC codes for additive white Gaussian noise (AWGN) channels. In addition, we show that the proposed scheme outperforms the reference schemes of concatenating LDPC codes with nonlinear memoryless mappers and using classical linear block codes in a time switching mode. © 2016 IEEE.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)