On code design for joint energy and information transfer

Date

2016

Authors

Dabirnia M.
Duman, T. M.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Communications

Print ISSN

0090-6778

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

64

Issue

6

Pages

2677 - 2688

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Harvesting energy from radio frequency signals along with transmitting data through them is appealing for different wireless communication scenarios, such as radio frequency identification (RFID) systems and implantable devices. In this paper, we propose a technique to design nonlinear codes for the use in such systems taking into account both energy transmission and error rate requirements. In particular, we propose using concatenation of a nonlinear trellis code (NLTC) with an outer low-density parity-check (LDPC) code. We design the NLTC based on maximization of its free distance. We give necessary and sufficient conditions for its catastrophicity; in order to avoid catastrophic codes, we connect each designed NLTC to a corresponding linear convolutional code allowing for the use of simpler conditions for verification. Furthermore, we use EXIT charts to design the outer LDPC code while fixing the inner NLTC. Via examples, we demonstrate that our designed codes operate at ∼ 0.8 dB away from the information theoretic limits, and they outperform both regular LDPC codes and optimized irregular LDPC codes for additive white Gaussian noise (AWGN) channels. In addition, we show that the proposed scheme outperforms the reference schemes of concatenating LDPC codes with nonlinear memoryless mappers and using classical linear block codes in a time switching mode. © 2016 IEEE.

Course

Other identifiers

Book Title

Citation