Characteristic lie algebra and classification of semi-discrete models

buir.advisorGürses, Metin
dc.contributor.authorPekcan, Aslı
dc.date.accessioned2016-01-08T18:11:32Z
dc.date.available2016-01-08T18:11:32Z
dc.date.issued2009
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references leaves 97-100.en_US
dc.description.abstractIn this thesis, we studied a differential-difference equation of the following form tx(n + 1, x) = f(t(n, x), t(n + 1, x), tx(n, x)), (1) where the unknown t = t(n, x) is a function of two independent variables: discrete n and continuous x. The equation (1) is called a Darboux integrable equation if it admits nontrivial x- and n-integrals. A function F(x, t, t±1, t±2, ...) is called an x-integral if DxF = 0, where Dx is the operator of total differentiation with respect to x. A function I(x, t, tx, txx, ...) is called an n-integral if DI = I, where D is the shift operator: Dh(n) = h(n + 1). In this work, we introduced the notion of characteristic Lie algebra for semidiscrete hyperbolic type equations. We used characteristic Lie algebra as a tool to classify Darboux integrability chains and finally gave the complete list of Darboux integrable equations in the case when the function f in the equation (1) is of the special form f = tx(n, x) + d(t(n, x), t(n + 1, x)).en_US
dc.description.statementofresponsibilityPekcan, Aslıen_US
dc.format.extentviii, 100 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/14960
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDarboux integrabilityen_US
dc.subjectFirst Integralsen_US
dc.subjectCharacteristic Lie Algebraen_US
dc.subject.lccQA252.3 .P45 2009en_US
dc.subject.lcshLie algebras.en_US
dc.subject.lcshIntegral equations.en_US
dc.subject.lcshDifferential equations.en_US
dc.titleCharacteristic lie algebra and classification of semi-discrete modelsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0003931.pdf
Size:
471.76 KB
Format:
Adobe Portable Document Format