On total reality of meromorphic functions
dc.citation.epage | 2030 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 2015 | en_US |
dc.citation.volumeNumber | 57 | en_US |
dc.contributor.author | Degtyarev, A. | en_US |
dc.contributor.author | Ekedahl, T. | en_US |
dc.contributor.author | Itenberg, I. | en_US |
dc.contributor.author | Shapiro, B. | en_US |
dc.contributor.author | Shapiro, M. | en_US |
dc.date.accessioned | 2016-02-08T10:11:54Z | |
dc.date.available | 2016-02-08T10:11:54Z | |
dc.date.issued | 2007 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We show that, if a meromorphic function of degree at most four on a real algebraic curve of an arbitrary genus has only real critical points, then it is conjugate to a real meromorphic function by a suitable projective automorphism of the image. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:11:54Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2007 | en |
dc.identifier.eissn | 1777-5310 | |
dc.identifier.uri | http://hdl.handle.net/11693/23315 | |
dc.language.iso | English | en_US |
dc.publisher | Association des Annales de l ' Institut Fourier | en_US |
dc.source.title | Annales de l ' Institut Fourier | en_US |
dc.subject | K3 - surface | en_US |
dc.subject | Meromorphic function | en_US |
dc.subject | Real curves on ellipsoid | en_US |
dc.subject | Total reality | en_US |
dc.title | On total reality of meromorphic functions | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_total_reality_of_meromorphic_functions.pdf
- Size:
- 409.67 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version