Simple functors of admissible linear categories

buir.advisorBarker, Laurence J.
dc.contributor.authorDemirel, Merve
dc.date.accessioned2016-01-08T18:27:50Z
dc.date.available2016-01-08T18:27:50Z
dc.date.issued2013
dc.descriptionAnkara : The Department of Mathematics and the Graduate School of Engineering and Science of Bilkent University, 2013.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2013.en_US
dc.descriptionIncludes bibliographical references leaves 25.en_US
dc.description.abstractWe review the notion of an admissible R-linear category for a commutative unital ring R and we prove the classification theorem for simple functors of such a category by Barker-Boltje which states that there is a bijective correspondence between the seeds of linear category and simple linear functors. We also review the application of this theorem by Bouc to the biset category by showing that the biset category is admissible. Finally, we classify the simple functors for the category of finite abelian p-groups and show that, for a natural number n, the n-th simple functor is non-zero on precisely the groups which have exponent at least pn .en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:27:50Z (GMT). No. of bitstreams: 1 0006677.pdf: 269920 bytes, checksum: 93f3a4cba05ab1c66b318d8b6706ae56 (MD5)en
dc.description.statementofresponsibilityDemirel, Merveen_US
dc.format.extentvi, 25 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/15972
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbiset functoren_US
dc.subjectsimple functorsen_US
dc.subjectadmissible categoryen_US
dc.subject.lccQA169 .D45 2013en_US
dc.subject.lcshFunctor theory.en_US
dc.subject.lcshCategories (Mathematics)en_US
dc.subject.lcshRings (Algebra)en_US
dc.titleSimple functors of admissible linear categoriesen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0006677.pdf
Size:
263.59 KB
Format:
Adobe Portable Document Format