Martingale representation for degenerate diffusions

buir.contributor.authorÜstünel, Ali Süleyman
dc.citation.epage3483en_US
dc.citation.issueNumber11en_US
dc.citation.spage3468en_US
dc.citation.volumeNumber276en_US
dc.contributor.authorÜstünel, Ali Süleymanen_US
dc.date.accessioned2020-02-04T11:15:43Z
dc.date.available2020-02-04T11:15:43Z
dc.date.issued2019
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet $(W,H,\mu )$ be the classical Wiener space on ${\rm IR}^{d}$. Assume that $X=(X_{t})$ is a diffusion process satisfying the stochastic differential equation $dX_{t}=\sigma (t,X)dB_{t}+b(t,X)dt$, where $\sigma :[0,1]{\rm ×}C([0,1],{\rm IR}^{n})\rightarrow{\rm IR}^{n}\bigotimes{{\rm IR}^{d}}$, $b:[0,1]{\rm ×}C([0,1],{\rm IR}^{n})\rightarrow{\rm IR}^{n}$, B is an ${\rm IR}^{d}$-valued Brownian motion. We suppose that the weak uniqueness of this equation holds for any initial condition. We prove that any square integrable martingale M w.r.t. to the filtration $({\rm F}_{t}(X),t\in [0,1])$ can be represented as $$M_{t}=E[M_{0}]+\int\limits_{0}^{t}{P_{s}}(X)\alpha_{s}(X).dB_{s}$$ where $\alpha (X)$ is an ${\rm IR}^{d}$-valued process adapted to $({\rm F}_{t}(X),t\in [0,1])$, satisfying $E\int_{0}^{t}{(}a(X_{s})\alpha_{s}(X),\alpha_{s}(X))ds<\infty$, $a=\sigma^{\bigstar}\sigma$ and $P_{s}(X)$ denotes a measurable version of the orthogonal projection from ${\rm IR}^{d}$ to $\sigma\mathop{\left({X_{s}}\right)}^{\bigstar}({\rm IR}^{n})$. In particular, for any $h\in H$, we have $$ (0.0) %Translator MathMagic Pro Win v8.6, LaTeX converter, 2020.2.6 11:43 \begin{array}{r} {{E}{[}\mathit{\rho}{(}\mathit{\delta}{h}{)|}{\mathcal{F}}_{1}{(}{X}{)]}{=}{\mathrm{exp}}\left({\mathop{\int}\limits_{0}\limits^{1}{}}\right.\left({{P}_{s}}\right.\left({X}\right){\dot{h}}_{s}{,}{dB}_{s}\left.{{\dot{h}}_{s},{dB}_{s}}\right)}\\ {{-}\frac{1}{2}\hspace{0.25em}\mathop{\int}\limits_{0}\limits^{1}{}{|}{P}_{s}\left({X}\right){\dot{h}}_{s}{|}^{2}{ds}\left.{{\dot{h}}_{s}{|}^{2}ds}\right){,}} \end{array} %MathMagic MMF.7h]O5*00_ESKK]]64?d2oH(N:H0Fm|YMiTeFU5BX9ATBL`6R?:R9VP[e9IFE=ZVSOno(L4T)Kfj15[ERJloLM^K|L4QV)ennF:dGTfbnFPhN1m_YNSK9E^]X|C_m|]Qm)W`HGQo_Qfl)Ml?OoCPI3KKI?;^JAK?O_^a)Qo^k2`VRek?e1]`S6`mM?1*PNCk9IY6:QdTlE4:9N2SU(j)OZAAd|kOGEi?i(QX=cX?1MS?;|_Wb9FjmfB`WReWdjV5o76kfYm?QkQ)H?i`R4BlFdogMjL_afg;oAkh3R6FgF3G4:QO[B[bjnOSb^=ooF^Y(Ubj4|he`(QLWgI^k)3_LkQn681^^kfmgMjG6am?k;lL3e(K]deikfEMeCmVbYfkiE)7bZLYUCnVbYgKIGkc|[UkfUjnJiHO=EMnYmiB_WRYO?EFnjRUOmIB_n|]GgNF[o_9ecnW[W_9e|gbBo`VGSXZUb]LbU[4=LY36f^I[3F]Y0S00G32bZ511TJ0R[1f;i=4X2B05h((J6US6^OOW2=LRGf8J(Z`E(l4dk=SW0=)**F7;WCmC5XGL*FeR[0?bQ5C`CmTVU8P]P6BI:6*W[75kX`(P5|HQ||*4RWG20b(?DQL8VDP:T=JBDh8GcE9*b41J0(fZDi`2IIT;Cd6i:SOUjg]b3SA?*4]6R:Hc:80^3a20hJMSJl5eD^f[7B]LNahkIL3`50bVh4(0XeRYAW(c`d6NPRT((HF;DQVjXNPOc`Xa:B_42]iJ?0f;J*Aobho26^bCXQd|GAI5ECKQ?F0a2aGFWZgCZ](B`MJ|5A9EDIY`4Q;J_P2fRYXT;18NPRkbB3aEG:2df|GaRl7aAW1|OhOkQh_16F;F1FBi2aIOk)UH:c[Lgh*emF58fN?f)|CbO7^Omf61=5OaA_Ai5a*XZD[cV(15)*lldjAEJZUPJdIoZ]R)ZJjHC*e[kmBbPdTCk^9HajBNPiAMHE:8fV`A|PiEKG1Y=WV4hL1F1bA5KBP9Ed)NdbD5Jd*YADeG6hfB1U)YdTA]ZL`_ba9JkYQ`h69C0BCUXPaIHhD6I7WjTTJT:X3RP:j(0W1:J4JZ4_6cTC*VOHUHJdS5;PjYnGf:aV*iH:AVehN4*BTZ*n[?8|(`:FeYFS|M6YHUTC*]:eBSQ)IUdLfB1VH9E(d*LbTXXHV9VYNCJkS[RYPZScElidRDFTVX[XE?d58STYiobj3Eh)F3g8NoWXHWJPe4e453A17F*F]9d_X4KD9Im6GUBZdS[J]YoI)njM=|o0eI4Tne(n_eJYE5HPbGY1PWl2]a0Gd:8[Zeg?kLN8?9IK93Y][?XkU2MaQg?;cV2Wa`WAb?ml4)WeL_3gNkhkLL)l3;oJOMJImS3gRm_j7g^EbBP^CekWSHoGBcEb5K;65fnQ0*9SokNS[^0UK(Ha9TV|T^Pl``fCC8;9(m3k:TRc3G9OAm;(RdRf3AIdh_5X`eNZ7P]=6K1)N=gQkZa2WKIXkN5d[VU:|cYgbK)IFfVJ(GPPIcm3;*H:ka8Q24GNfSNo]7fbkcY=OLeIWC_|6LCQ_(6M5Rc|PfLdIaiXb^(fM(VcUSflbIY(fLL*gVMSM`eN3C;cB8YgmP4P2|1Jd9JAaS^f?=g:2HiP4:C;0d60B(YeM[603;nn?]kVJHkKnN`Tc(?g:L3noYjV[E]8(9*SlM2g03Yl|O:CR|=ZlF4M8fGfHAQ]_l|7Yc)MW(D7W6j(]|]|c`_eW03|KFhoKbLC^=IR?h|gdgfVkPD0B1285(=89OB3;j3Uo_hSR6UX4O6LO_XaNS;FbD577Tj7`)c]?XKNjeODnA_0_NYNonjfObQS|2^FOHRgU:icbL69g;^=|i_SeRo=LQRX1aPg4d:5VHJGAMCnX1W?ZlA)GeM]AUe18I(9|dI0Y^NHo4dkVe(g8*8a(O;m]YPD0E6OaW*M]U67*1o*IVRTB7dUiaQY]^2SWJ`?edm0o?1Q3fB=L1o5mLOjN]7J|?YAlOA_n2j]jHWDcWI`?7(?P;)cbRm*.mmf $$ where $ %Translator MathMagic Pro Win v8.6, LaTeX converter, 2020.2.6 11:52 \mathit{\rho}{(}\mathit{\delta}{h}{)}{=}{\mathrm{exp}}{(}\mathop{\int}\nolimits_{0}\nolimits^{1}{(}{\dot{h}}_{s}{,}{dB}_{s}{)}{-}\frac{1}{2}\hspace{0.25em}{|}{H}{|}_{H}^{2}{)} %MathMagic MMF.7h|V4`00QESKT]Y64?d2oX57DJFUY^NR6OV=aLBV|X0;I3]E8*o49SJE_CP|M^a|n?M(]fJTUY0fRgOYdcgCUc(m3O9f__aY]Ei(R_UZ)GPJK:O[fJAH[I?5k_Ai|O]dn31lLg`H_SoL3kniLCHJK8]iLC=;IWmmgId)3oMGh5G_I^^=gijHM6SCXO2JUi=RU|QdV:E3:JA8Q`0_S7bQdL7|UcLgToTb6*g)Pl5f(b^:nO8EQ]i|UY?5;7Wk^3l)=o_CjG3obBmo?2DRGBbVno_Cen)?iOk_(X9G*kMJ]]BbE:]J_K[mn)ZhgomIfGBG;KPc;GM*Z[?^h3H]3WOkaj7G3ML?Mk_kb^;BjL?Ghl7Ga]OW_N^Q[nZN|Z6WKWR^L7R^L^PY7GYZQokRXK]jj2mO]||?`FGOZOND;il[GciG_^`YGoJD;o_;UmgUbokbELoYZikbEK]ld_oS[hi(*IHbY92JX?OJE9UBEUh67H3f`8I51Pdb638d1=TbC`hGI*7T7[PPn`J6]=cm9D5IU2:V0D6FK0VVHLJ^19P618)Y8WnQ;:;Nn][4F0GT2(V`?fM1:14C0K1(9;8CI0b_E*34`SQh1T`PbQUgS3b0RPRIb2;86lU9`H]V:DQT88m0|NXTYd0J]XFW86fMVgC=V9`3aA=*`0QAM0HAZ)X0?M3lM4c3^L[Z^(Zb`YGS_W(6=4m1H`X^)=2BUJXEGjHi:5?*LB6VL5DI*cO4oW6|49fc*XcP[LGC(9Q6f6ohDAR=OA;K`M2eR5FIS?N0`BaTT1fClk[C(|5TePZI[2W=)0TIQHo0e5jcS7W2*e0aSlaAaA7UMAC;;h?USF1IO8_a`fF`VYRe0AVn1H^?(Be[AH_aMI2Y3d?:3|)[h(_al:k|`hPD=o56M6DGA9CEYCU(h:ZJ1hiIlSZeG32IdIm;5S5G=K)iI^fM6gH`NLJgF=Ha^N(PIcL(Q6S(5P5=:1^3Bk798c*7YShP48fQ96`3)DhG2=J80:9QJha6X(5DVAAAFaW;JeU1`cMV7=QDe`19^JYL=URQ0EVM?]28U1583^QVA(0YXATY:lC?1VQ(^PZaeP39;PLXoSU5Hk8J(:3Ho*0o:4FmT?XcIQPVYJVF=Tj7QVE594g;6SDXXGTI^aUXH5I0=QIR;Y4BVYQXNCEihcmeADZEYlZoUdQDER3D]?YG|58STYfo*k0Z_l|5_*]o7*e?]6[_D*D;4DEH1J|QcLD[F3?:XRl[FeT]FFg3jYkMVco?a_n*1GRZWEV_Ej|R4F=o9LDhlkn0P^mC[j:?U[|oFTl`Y*hjM?;bnfQYD1f;)kjlUPKlhSXi7Qo2)_bnNWfhgaeoU=Qj_=aofYgf9GHN[oNgm3aGJW:_NKLk7WJogniUb1I;V9dn18C9ckjOS[^09M|a2C[5M=M1YiU^6WB6jEh6GMI5V)eB^ShF8)lRF?*]Y`L;aQXmD73Jj4V2ldI?3dgRY;UTSYhG:^JTKC8WgBEc([mTSQh8F|cA`d2;^MJ3*51f]HoZkAmU^YIW_L]]TcWUF|bY_(FL5QO(JKQTCT_)W5I=i[BnI4jKBnIdM|VL]RgVM[One^2gGmlPS_ki9*5hFI1(B)4HfadKbcFZJAjP*XNE6YghaM)K]Al0bhOSgNifF)boWl9(;5l`;XOgM7FcJZoc4hAn)PBocFnjoYVLNfWcMY4PKO=UTJ2kcN_Enn_9IXK6(gYO5[=UPOo=L_fdgOPC4:?]==TV8`lPD`PnTfI46VLmn3D]Ob1=Od_fgko47*EfVAPmXB_BW4]9A06l((MW?_ln2Ej4Wa7XAoY?RBN:M_J)88]^7TOW(gY;(L[7je6WTI:C)J2e(TXNmUdkW?;:SOmX*;OohYoG*O;nCGCa)[Z*EJ3cNO0O0l*E3`.mmf $ In the case the process X is adapted to the Brownian filtration, this result gives a new development as an infinite series of the $L^{2}$-functionals of the degenerate diffusions. We also give an adequate notion of “innovation process” associated to a degenerate diffusion which corresponds to the strong solution when the Brownian motion is replaced by an adapted perturbation of identity. This latter result gives the solution of the causal Monge–Ampère equation.en_US
dc.embargo.release2021-06-01
dc.identifier.doi10.1016/j.jfa.2018.12.004en_US
dc.identifier.issn0022-1236
dc.identifier.urihttp://hdl.handle.net/11693/53052
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.jfa.2018.12.004en_US
dc.source.titleJournal of Functional Analysisen_US
dc.subjectEntropyen_US
dc.subjectDegenerate diffusionsen_US
dc.subjectMartingale representationen_US
dc.subjectRelative entropyen_US
dc.subjectInnovation processen_US
dc.subjectCausal Monge–Ampère equationen_US
dc.titleMartingale representation for degenerate diffusionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martingale_representation_for_degenerate_diffusions.pdf
Size:
336.41 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: