Dynamical systems and Poisson structures

dc.citation.epage112703-9en_US
dc.citation.issueNumber11en_US
dc.citation.spage112703-1en_US
dc.citation.volumeNumber50en_US
dc.contributor.authorGurses, M.en_US
dc.contributor.authorGuseinov, G. Sh.en_US
dc.contributor.authorZheltukhin, K.en_US
dc.date.accessioned2015-07-28T11:58:55Z
dc.date.available2015-07-28T11:58:55Z
dc.date.issued2009en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe first consider the Hamiltonian formulation of n=3 systems, in general, and show that all dynamical systems in ℝ3 are locally bi-Hamiltonian. An algorithm is introduced to obtain Poisson structures of a given dynamical system. The construction of the Poisson structures is based on solving an associated first order linear partial differential equations. We find the Poisson structures of a dynamical system recently given by Bender [J. Phys. A: Math. Theor. 40, F793 (2007)]. Secondly, we show that all dynamical systems in Rn are locally (n-1) -Hamiltonian. We give also an algorithm, similar to the case in ℝ3, to construct a rank two Poisson structure of dynamical systems in ℝn. We give a classification of the dynamical systems with respect to the invariant functions of the vector field X→ and show that all autonomous dynamical systems in ℝn are superintegrable. © 2009 American Institute of Physics.en_US
dc.identifier.doi10.1063/1.3257919en_US
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11693/11827
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.3257919en_US
dc.source.titleJournal of Mathematical Physicsen_US
dc.subjectHamiltonian dynamicsen_US
dc.subjectEquationsen_US
dc.titleDynamical systems and Poisson structuresen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dynamical_systems_and_Poisson_structures.pdf
Size:
120.79 KB
Format:
Adobe Portable Document Format
Description:
Full printable version