Semi-automatic video object segmentation

Date

2000

Editor(s)

Advisor

Onural, Levent

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
3
downloads

Series

Abstract

Content-based iunetionalities form the core of the future multimedia applications. The new multimedia standard MPEG-4 provides a new form of interactivity with coded audio-visual data. The emerging standard MPEG-7 specifies a common description of various types of multimedia information to index the data for storage and retrieval. However, none of these standards specifies how to extract the content of the multimedia data. Video object segmentation addresses this task and tries to extract semantic objects from a scene. Two tyj)es of video object segmentation can be identified: unsupervised and supervised. In unsupervised méthods the user is not involved in any step of the process. In supervised methods the user is requested to supply additional information to increase the quality of the segmentation. The proposed weakly supervised still image segmentation asks the user to draw a scribble over what he defines as an object. These scribbles inititate the iterative method. .A.t each iteration the most similar regions are merged until the desired numljer of regions is reached. The proposed .segmentation method is inserted into the unsupervised COST211ter .A-ualysis Model (.A.M) for video object segmentation. The AM is modified to handh' the sujiervision. The new semi-automatic AM requires the user intei actimi for onl>· first frame of the video, then segmentation and object tracking is doin' automatically. The results indicate that the new semi-automatic AM constituK's a good tool for video oliject segmentation.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type