A note on Serre ' s theorem in group cohomology
dc.citation.epage | 2663 | en_US |
dc.citation.issueNumber | 8 | en_US |
dc.citation.spage | 2655 | en_US |
dc.citation.volumeNumber | 136 | en_US |
dc.contributor.author | Yalçin, E. | en_US |
dc.date.accessioned | 2016-02-08T10:08:17Z | |
dc.date.available | 2016-02-08T10:08:17Z | |
dc.date.issued | 2008 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | In 1987, Serre proved that if G is a p-group which is not elementary abelian, then a product of Bocksteins of one dimensional classes is zero in the mod p cohomology algebra of G, provided that the product includes at least one nontrivial class from each line in H1 (G,Fp). For p = 2, this gives that (σG) = 0, where σG is the product of all nontrivial one dimensional classes in H1 (G, F 2). In this note, we prove that if G is a nonabelian 2-group, then σG is also zero. © 2008 American Mathematical Society. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:08:17Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008 | en |
dc.identifier.doi | 10.1090/S0002-9939-08-09408-2 | en_US |
dc.identifier.eissn | 1088-6826 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.uri | http://hdl.handle.net/11693/23050 | |
dc.language.iso | English | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/S0002-9939-08-09408-2 | en_US |
dc.source.title | Proceedings of the American Mathematical Society | en_US |
dc.subject | Cohomology of groups | en_US |
dc.subject | Essential cohomology | en_US |
dc.subject | Stiefel - Whitney classes | en_US |
dc.title | A note on Serre ' s theorem in group cohomology | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_note_on_Serre_s_theorem_in_group_cohomology.pdf
- Size:
- 180.43 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version