A note on Serre ' s theorem in group cohomology

dc.citation.epage2663en_US
dc.citation.issueNumber8en_US
dc.citation.spage2655en_US
dc.citation.volumeNumber136en_US
dc.contributor.authorYalçin, E.en_US
dc.date.accessioned2016-02-08T10:08:17Z
dc.date.available2016-02-08T10:08:17Z
dc.date.issued2008en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIn 1987, Serre proved that if G is a p-group which is not elementary abelian, then a product of Bocksteins of one dimensional classes is zero in the mod p cohomology algebra of G, provided that the product includes at least one nontrivial class from each line in H1 (G,Fp). For p = 2, this gives that (σG) = 0, where σG is the product of all nontrivial one dimensional classes in H1 (G, F 2). In this note, we prove that if G is a nonabelian 2-group, then σG is also zero. © 2008 American Mathematical Society.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:08:17Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1090/S0002-9939-08-09408-2en_US
dc.identifier.eissn1088-6826
dc.identifier.issn0002-9939
dc.identifier.urihttp://hdl.handle.net/11693/23050
dc.language.isoEnglishen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/S0002-9939-08-09408-2en_US
dc.source.titleProceedings of the American Mathematical Societyen_US
dc.subjectCohomology of groupsen_US
dc.subjectEssential cohomologyen_US
dc.subjectStiefel - Whitney classesen_US
dc.titleA note on Serre ' s theorem in group cohomologyen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_note_on_Serre_s_theorem_in_group_cohomology.pdf
Size:
180.43 KB
Format:
Adobe Portable Document Format
Description:
Full printable version