Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AIN/GaN heterostructures

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage1011en_US
dc.citation.issueNumber20-22en_US
dc.citation.spage1006en_US
dc.citation.volumeNumber356en_US
dc.contributor.authorArslan, E.en_US
dc.contributor.authorSafak, Y.en_US
dc.contributor.authorAltindal, S.en_US
dc.contributor.authorKelekci, O.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2015-07-28T11:59:10Z
dc.date.available2015-07-28T11:59:10Z
dc.date.issued2010-02-10en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractThe temperature dependent capacitance voltage (C-V) and conductance voltage (G/omega-V) characteristics of (Ni/Au)/Al(0.22)Ga(0.78)N/AlN/GaN heterostructures were investigated by considering the series resistance (R(s)) effect in the temperature range of 80-390 K. The experimental results show that the values of C and G/omega are strongly functioning of temperature and bias voltage. The values of C cross at a certain forward bias voltage point (similar to 2.8 V) and then change to negative values for each temperature, which is known as negative capacitance (NC) behavior. In order to explain the NC behavior, we drawn the C vs I and G/omega vs I plots for various temperatures at the same bias voltage. The negativity of the C decreases with increasing temperature at the forward bias voltage, and this decrement in the NC corresponds to the increment of the conductance. When the temperature was increased, the value of C decreased and the intersection point shifted towards the zero bias direction. This behavior of the C and G/omega values can be attributed to an increase in the polarization and the introduction of more carriers in the structure. R(s) values increase with increasing temperature. Such temperature dependence is in obvious disagreement with the negative temperature coefficient of R or G reported in the literature. The intersection behavior of C-V curves and the increase in R(s) with temperature can be explained by the lack of free charge carriers, especially at low temperatures.en_US
dc.identifier.doi10.1016/j.jnoncrysol.2010.01.024en_US
dc.identifier.issn0022-3093
dc.identifier.urihttp://hdl.handle.net/11693/11885
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jnoncrysol.2010.01.024en_US
dc.source.titleJournal of Non-Crystalline Solidsen_US
dc.subjectIII-V Semiconductorsen_US
dc.subjectHeterostructuresen_US
dc.subjectNegative Capacitanceen_US
dc.subjectAlGaN/GaNen_US
dc.titleTemperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AIN/GaN heterostructuresen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.jnoncrysol.2010.01.024.pdf
Size:
729.24 KB
Format:
Adobe Portable Document Format
Description:
Full printable version