Design of all-silicon photonic and plasmonic perfect absorbers and their applications

Date

2016-06

Editor(s)

Advisor

Okyay, Ali Kemal

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
25
downloads

Series

Abstract

Majority of the optoelectronic devices works either in infrared regime or in visible spectrum. Among these, perfect absorbers attracted great attention due to their high applicability in solar cells and high performance photodetectors as well as special applications such as surface enhanced sensing. However, high material costs and elaborate nano-fabrication procedures to build perfect absorbers are prohibitive issues that researchers or processors have to deal with. In this work, all-Silicon (Si) practical low-cost photonic and plasmonic perfect absorbers are investigated by theoretical modeling and the designed devices are fabricated by utilizing standard CMOS technology. In order to model the optical response of Si, the effect of charge carrier mobility on the dielectric is analyzed. We showed that high performance devices that can perform better than the state of the art are possible without requiring high cost materials and elaborate fabrication techniques. Photonic perfect absorbers that have promising band properties in infrared are designed and fabricated. Experimental results support theoretical predictions. We used computational approach to investigate the effect of temperature.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type