The barrier for heme-protein separation estimated by non-equilibrium molecular dynamics simulations

Date

1998

Authors

Edholm O.
Ohlsson P.I.
Smith, M.L.
Paul J.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
12
downloads

Series

Abstract

In heme-containing proteins the heme group is usually non-covalently bound in a pocket. Molecular dynamics (MD) simulations have been performed to estimate the barrier height for heme-protein separation. In simulations of myoglobin dissolved in water, a force has been applied to pull the heme out of the binding pocket. With forces above 0.5 nN, the heme group is easily pulled out of the pocket in times of the order of tens of picoseconds. With weaker forces, heme release becomes too slow to be monitored in an MD simulation covering a couple of hundred picoseconds. These results are consistent with a free energy barrier to heme release of about 100 kJ/mol. The results show that the main energetic change that occurs during the release is a conversion of heme/protein Lennard-Jones energy into heme/water Lennard-Jones energy. The release is essentially barrierless in energy indicating that the main part of the barrier is entropic.

Source Title

Chemical Physics Letters

Publisher

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English