Excitonics of colloidal nanocrystals for next-generation optoelectronics

buir.advisorDemir, Hilmi Volkan
dc.contributor.authorGüzeltürk, Burak
dc.date.accessioned2016-05-31T13:41:03Z
dc.date.available2016-05-31T13:41:03Z
dc.date.copyright2016-05
dc.date.issued2016-05
dc.date.submitted2016-05-31
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references (leaves 274-308).en_US
dc.descriptionThesis (Ph.D.): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2016.en_US
dc.description.abstracten_US
dc.description.abstractOwing to the tremendous progress in the past decade, semiconductor nanocrystals that are grown by low-temperature solution-phase epitaxy have evolved into highly promising material systems for optoelectronics with ever increasing interest from the industry. However, fundamental challenges exist in conventional nanocrystals hampering their energy-efficient optoelectronic devices. In this thesis, we addressed important scientific problems and overcome various technological hurdles through optical physics discoveries and innovative nanomaterial processing. Specifically, we have proposed, designed and developed next generation of nanocrystals that exhibit superior optical and material properties than those of the conventional nanocrystals. Mastering intra- and inter-particle excitonic processes in these nanocrystals and their hybrids empowered us to control and tailor the desired photonic response. Our key achievements include demonstration of record high modal gain coefficients and giant nonlinear absorption cross-section in atomically-flat nanocrystals, ultralow-threshold all-solution processed quantum dot lasers and unprecedentedly strong exciton transport in self-assembled nanocrystals.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2016-05-31T13:41:03Z No. of bitstreams: 1 Burak Guzelturk Merged Thesis v8.pdf: 19617421 bytes, checksum: a0755a94f72eec8719f93edc27e1f5f0 (MD5)en
dc.description.provenanceMade available in DSpace on 2016-05-31T13:41:03Z (GMT). No. of bitstreams: 1 Burak Guzelturk Merged Thesis v8.pdf: 19617421 bytes, checksum: a0755a94f72eec8719f93edc27e1f5f0 (MD5) Previous issue date: 2016-05en
dc.description.statementofresponsibilityby Burak Güzeltürk.en_US
dc.embargo.release2018-05-24
dc.format.extentxxxii, 308 leaves : charts.en_US
dc.identifier.itemidB153354
dc.identifier.urihttp://hdl.handle.net/11693/29123
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectColloidal quantumdotsen_US
dc.subjectSemiconductornanocrystalsen_US
dc.subjectNanoplateletsen_US
dc.subjectExcitonen_US
dc.subjectNonradiativeenergytransferen_US
dc.subjectOptoelectronicsen_US
dc.subjectLaseren_US
dc.subjectOpticalgainen_US
dc.subjectLight- emitting diodeen_US
dc.subjectSolarcellen_US
dc.subjectLight-harvestingen_US
dc.titleExcitonics of colloidal nanocrystals for next-generation optoelectronicsen_US
dc.title.alternativeYeni nesil optoelektronik teknolojileri için koloidal nanokristallerin eksitonik özelliklerinin anlaşılmasıen_US
dc.typeThesisen_US
thesis.degree.disciplineElectrical and Electronic Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Burak Guzelturk Merged Thesis v8.pdf
Size:
18.71 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: