RadGT: graph and transformer-based automotive radar point cloud segmentation

buir.contributor.authorKoç, Aykut
buir.contributor.orcidKoç, Aykut|0000-0002-6348-2663
dc.citation.epage6008904-4en_US
dc.citation.issueNumber11
dc.citation.spage6008904-1
dc.citation.volumeNumber7
dc.contributor.authorSevimli, R. A.
dc.contributor.authorUcuncu, M.
dc.contributor.authorKoç, Aykut
dc.date.accessioned2024-03-14T08:10:36Z
dc.date.available2024-03-14T08:10:36Z
dc.date.issued2023-10-25
dc.departmentDepartment of Electrical and Electronics Engineering
dc.departmentNational Magnetic Resonance Research Center (UMRAM)
dc.description.abstractThe need for visual perception systems providing situational awareness to autonomous vehicles has grown significantly. While traditional deep neural networks are effective for solving 2-D Euclidean problems, point cloud analysis, particularly for radar data, contains unique challenges because of the irregular geometry of point clouds. This letter proposes a novel transformer-based architecture for radar point clouds adapted to the graph signal processing (GSP) framework, designed to handle non-Euclidean and irregular signal structures. We provide experimental results by using well-established benchmarks on the nuScenes and RadarScenes datasets to validate our proposed method.
dc.description.provenanceMade available in DSpace on 2024-03-14T08:10:36Z (GMT). No. of bitstreams: 1 RadGT_Graph_and_Transformer-Based_Automotive_Radar_Point_Cloud_Segmentation.pdf: 1424070 bytes, checksum: d2bb3c513855c032f79d070062c4a27f (MD5) Previous issue date: 2023-10-25en
dc.identifier.doi10.1109/LSENS.2023.3327593
dc.identifier.eissn2475-1472
dc.identifier.urihttps://hdl.handle.net/11693/114725
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.isversionofhttps://dx.doi.org/10.1109/LSENS.2023.3327593
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleIEEE Sensors Letters
dc.subjectAutomotive RADAR
dc.subjectGraph signal processing (GSP)
dc.subjectPoint cloud processing
dc.subjectSegmentation
dc.subjectSensor applications
dc.subjectTransformers
dc.titleRadGT: graph and transformer-based automotive radar point cloud segmentation
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RadGT_Graph_and_Transformer-Based_Automotive_Radar_Point_Cloud_Segmentation.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: