Adsorption and dissociation of hydrogen molecule on carbon nanotubes

Date

2004

Editor(s)

Advisor

Çıracı, Salim

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
10
downloads

Series

Abstract

Earlier, it has been suggested that carbon nanotubes can provide high storage capacity and other physical properties suitable for the fuel cell technologies. In this thesis we have investigated adsorption, desorption and dissociation of hydrogen molecule on the surface of the zigzag (8,0) single-wall carbon nanotube (SWNT) by carrying out extensive first-principles pseudopotential plane wave calculations within the Density Functional Theory (DFT). We found that while H2 molecule cannot be bound to the surface of bare SWNT, an elastic radial deformation leading to the elliptical deformation of the circular cross-section renders the physisorption of the molecule possible. Coadsorption of Li atom on the SWNT makes the similar effect, and hence enhances the physisorption. That an adsorbed H2 can be desorbed upon releasing the elastic radial strain is extremely convenient for the storage. In addition to that, we found that a Pt atom coadsorbed on the SWNT can form a strong chemisorption bond with a H2 molecule. If a single H2 molecule engages in interactions with more than one coadsorbed Pt atom at its close proximity it dissociates into single H atoms, which, in turn, make Pt-H bonds. The interaction between H2 and coadsorbed Pd atom is similar to Pt, but it is weaker. We believe that these findings clarify earlier controversial results related to the storage of H2 in carbon nanotubes, and makes important contributions to fuel cell technology.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type