Wildfire detection using LMS based active learning

buir.contributor.authorÇetin, A. Enis
buir.contributor.orcidÇetin, A. Enis|0000-0002-3449-1958
dc.citation.epage1464en_US
dc.citation.spage1461en_US
dc.contributor.authorTöreyin, B. Uğuren_US
dc.contributor.authorÇetin, A. Enisen_US
dc.coverage.spatialTaipei, Taiwan
dc.date.accessioned2016-02-08T11:34:18Z
dc.date.available2016-02-08T11:34:18Z
dc.date.issued2009-04en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 19-24 April 2009
dc.descriptionConference name: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing
dc.description.abstractA computer vision based algorithm for wildfire detection is developed. The main detection algorithm is composed of four sub-algorithms detecting (i) slow moving objects, (ii) gray regions, (iii) rising regions, and (iv) shadows. Each algorithm yields its own decision as a real number in the range [-1,1] at every image frame of a video sequence. Decisions from subalgorithms are fused using an adaptive algorithm. In contrast to standard Weighted Majority Algorithm (WMA), weights are updated using the Least Mean Square (LMS) method in the training (learning) stage. The error function is defined as the difference between the overall decision of the main algorithm and the decision of an oracle, who is the security guard of the forest look-out tower. ©2009 IEEE.en_US
dc.identifier.doi10.1109/ICASSP.2009.4959870en_US
dc.identifier.urihttp://hdl.handle.net/11693/26735
dc.language.isoEnglishen_US
dc.publisherIEEE
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICASSP.2009.4959870en_US
dc.source.titleICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsen_US
dc.subjectActive learningen_US
dc.subjectLeast mean square methodsen_US
dc.subjectWildfire detectionen_US
dc.subjectDetection algorithmen_US
dc.subjectError functionen_US
dc.subjectGray regionen_US
dc.subjectImage framesen_US
dc.subjectLeast mean square methoden_US
dc.subjectReal numberen_US
dc.subjectSecurity guardsen_US
dc.subjectSlow moving objectsen_US
dc.subjectVideo sequencesen_US
dc.subjectWeighted majority algorithmen_US
dc.subjectAcousticsen_US
dc.subjectAdaptive algorithmsen_US
dc.subjectComputer visionen_US
dc.subjectEducationen_US
dc.subjectFiresen_US
dc.subjectNumber theoryen_US
dc.subjectSignal detectionen_US
dc.subjectSignal processingen_US
dc.subjectVideo recordingen_US
dc.subjectLearning algorithmsen_US
dc.titleWildfire detection using LMS based active learningen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wildfire detection using LMS based active learning.pdf
Size:
162.4 KB
Format:
Adobe Portable Document Format
Description:
Full printable version