Variations on Hammersley’s interacting particle process

buir.contributor.authorAtalık, Arda
buir.contributor.authorYıldırım, Gökhan
buir.contributor.authorYılmaz, Mustafa
buir.contributor.orcidAtalık, Arda|0000-0003-3439-7838
buir.contributor.orcidYıldırım, Gökhan|0000-0003-4399-7843
dc.citation.epage39en_US
dc.citation.spage34en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorAtalık, Arda
dc.contributor.authorMelihcan Erol, H. S.
dc.contributor.authorYıldırım, Gökhan
dc.contributor.authorYılmaz, Mustafa
dc.coverage.spatialPakistanen_US
dc.date.accessioned2022-02-09T12:27:41Z
dc.date.available2022-02-09T12:27:41Z
dc.date.issued2021-06
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractThe longest increasing subsequence problem for permutations has been studied extensively in the last fifty years. The interpretation of the longest increasing subsequence as the longest 21-avoiding subsequence in the context of permutation patterns leads to many interesting research directions. We introduce and study the statistical properties of Hammersley type interacting particle processes related to these generalizations and explore the finer structures of their distributions. We also propose three different interacting particle systems in the plane analogous to the Hammersley process in one dimension and obtain estimates for the asymptotic orders of the mean and variance of the number of particles in the systems.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-02-09T12:27:41Z No. of bitstreams: 1 Variations_on_Hammersley’s_interacting_particle_process.pdf: 564847 bytes, checksum: d145dcd43b52ec116ba7aaa7fb995cb0 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-09T12:27:41Z (GMT). No. of bitstreams: 1 Variations_on_Hammersley’s_interacting_particle_process.pdf: 564847 bytes, checksum: d145dcd43b52ec116ba7aaa7fb995cb0 (MD5) Previous issue date: 2021-06en
dc.identifier.doi10.47443/dml.2021.0049en_US
dc.identifier.issn2664-2557
dc.identifier.urihttp://hdl.handle.net/11693/77175
dc.language.isoEnglishen_US
dc.publisherShahin Digital Publisheren_US
dc.relation.isversionofhttps://dx.doi.org/10.47443/dml.2021.0049en_US
dc.source.titleDiscrete Mathematics Lettersen_US
dc.subjectLongest increasing subsequencesen_US
dc.subjectHammersley’s processen_US
dc.subjectPermutation patternsen_US
dc.titleVariations on Hammersley’s interacting particle processen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Variations_on_Hammersley’s_interacting_particle_process.pdf
Size:
551.61 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: