Computing the recession cone of a convex upper image via convex projection
buir.contributor.author | Ulus, Firdevs | |
buir.contributor.orcid | Ulus, Firdevs|0000-0002-0532-9927 | |
dc.citation.epage | 994 | |
dc.citation.issueNumber | 4 | |
dc.citation.spage | 975 | |
dc.citation.volumeNumber | 89 | |
dc.contributor.author | Kovácová, G. | |
dc.contributor.author | Ulus, Firdevs | |
dc.date.accessioned | 2025-02-15T16:22:59Z | |
dc.date.available | 2025-02-15T16:22:59Z | |
dc.date.issued | 2024-03-01 | |
dc.department | Department of Industrial Engineering | |
dc.description.abstract | It is possible to solve unbounded convex vector optimization problems (CVOPs) in two phases: (1) computing or approximating the recession cone of the upper image and (2) solving the equivalent bounded CVOP where the ordering cone is extended based on the first phase. In this paper, we consider unbounded CVOPs and propose an alternative solution methodology to compute or approximate the recession cone of the upper image. In particular, we relate the dual of the recession cone with the Lagrange dual of weighted sum scalarization problems whenever the dual problem can be written explicitly. Computing this set requires solving a convex (or polyhedral) projection problem. We show that this methodology can be applied to semidefinite, quadratic, and linear vector optimization problems and provide some numerical examples. | |
dc.description.provenance | Submitted by Mervenur Sarıgül (mervenur.sarigul@bilkent.edu.tr) on 2025-02-15T16:22:59Z No. of bitstreams: 1 Computing_the_recession_cone_of_a_convex_upper_image_via_convex_projection.pdf: 722462 bytes, checksum: 3750766734be9532c2fbb47955f60170 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2025-02-15T16:22:59Z (GMT). No. of bitstreams: 1 Computing_the_recession_cone_of_a_convex_upper_image_via_convex_projection.pdf: 722462 bytes, checksum: 3750766734be9532c2fbb47955f60170 (MD5) Previous issue date: 2024-03-01 | en |
dc.identifier.doi | 10.1007/s10898-023-01351-3 | |
dc.identifier.eissn | 1573-2916 | |
dc.identifier.issn | 0925-5001 | |
dc.identifier.uri | https://hdl.handle.net/11693/116277 | |
dc.language.iso | English | |
dc.publisher | Springer New York LLC | |
dc.relation.isversionof | https://dx.doi.org/10.1007/s10898-023-01351-3 | |
dc.rights | CC BY 4.0 (Attribution 4.0 International Deed) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source.title | Journal of Global Optimization | |
dc.subject | Convex vector optimization | |
dc.subject | Linear vector optimization · | |
dc.subject | Unbounded vector optimization | |
dc.subject | Recession cone | |
dc.subject | Convex projection | |
dc.title | Computing the recession cone of a convex upper image via convex projection | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Computing_the_recession_cone_of_a_convex_upper_image_via_convex_projection.pdf
- Size:
- 705.53 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: