On generalised triplets of Hilbert spaces
buir.contributor.author | Gheondea, Aurelian | |
dc.citation.epage | 220 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 213 | en_US |
dc.citation.volumeNumber | 21 | en_US |
dc.contributor.author | Cojuhari, P. | |
dc.contributor.author | Gheondea, Aurelian | |
dc.date.accessioned | 2021-03-04T13:51:05Z | |
dc.date.available | 2021-03-04T13:51:05Z | |
dc.date.issued | 2020 | |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We compare the concept of triplet of closely embedded Hilbert spaces with that of generalised triplet of Hilbert spaces in the sense of Berezanskii by showing when they coincide, when they are different, and when starting from one of them one can naturally produce the other one that essentially or fully coincides. | en_US |
dc.description.provenance | Submitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2021-03-04T13:51:04Z No. of bitstreams: 1 On_generalised_triplets_of_hilbert_spaces.pdf: 179082 bytes, checksum: a64aee3caf1c810f3e3a08e025e03b94 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2021-03-04T13:51:05Z (GMT). No. of bitstreams: 1 On_generalised_triplets_of_hilbert_spaces.pdf: 179082 bytes, checksum: a64aee3caf1c810f3e3a08e025e03b94 (MD5) Previous issue date: 2020 | en |
dc.identifier.issn | 1454-9069 | |
dc.identifier.uri | http://hdl.handle.net/11693/75788 | |
dc.language.iso | English | en_US |
dc.publisher | Editura Academiei Romane | en_US |
dc.source.title | Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science | en_US |
dc.subject | Generalised triplet of Hilbert spaces | en_US |
dc.subject | Closed embedding | en_US |
dc.subject | Triplet of closely embedded Hilbert spaces | en_US |
dc.subject | Rigged Hilbert spaces | en_US |
dc.title | On generalised triplets of Hilbert spaces | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_generalised_triplets_of_hilbert_spaces.pdf
- Size:
- 174.88 KB
- Format:
- Adobe Portable Document Format
- Description:
- View / Download
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: