Detection and identification of changes of hidden Markov chains: Asymptotic theory
buir.contributor.author | Dayanık, Savaş | |
buir.contributor.orcid | Dayanık, Savaş|0000-0002-0810-5507 | |
dc.citation.epage | 301 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 261 | en_US |
dc.citation.volumeNumber | 25 | en_US |
dc.contributor.author | Dayanık, Savaş | |
dc.contributor.author | Yamazaki, Kazutoshi | |
dc.date.accessioned | 2023-02-27T08:31:34Z | |
dc.date.available | 2023-02-27T08:31:34Z | |
dc.date.issued | 2021-10-06 | |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | This paper revisits a unified framework of sequential change-point detection and hypothesis testing modeled using hidden Markov chains and develops its asymptotic theory. Given a sequence of observations whose distributions are dependent on a hidden Markov chain, the objective is to quickly detect critical events, modeled by the first time the Markov chain leaves a specific set of states, and to accurately identify the class of states that the Markov chain enters. We propose computationally tractable sequential detection and identification strategies and obtain sufficient conditions for the asymptotic optimality in two Bayesian formulations. Numerical examples are provided to confirm the asymptotic optimality. © 2021, The Author(s). | en_US |
dc.description.provenance | Submitted by Zeliha Bucak Çelik (zeliha.celik@bilkent.edu.tr) on 2023-02-27T08:31:34Z No. of bitstreams: 1 Detection_and_identification_of_changes_of_hidden_Markov_chains_asymptotic_theory.pdf: 888416 bytes, checksum: 28295343eff151d390c800410258aaf6 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-27T08:31:34Z (GMT). No. of bitstreams: 1 Detection_and_identification_of_changes_of_hidden_Markov_chains_asymptotic_theory.pdf: 888416 bytes, checksum: 28295343eff151d390c800410258aaf6 (MD5) Previous issue date: 2021-10-06 | en |
dc.identifier.doi | 10.1007/s11203-021-09253-5 | en_US |
dc.identifier.eissn | 1572-9311 | |
dc.identifier.issn | 1387-0874 | |
dc.identifier.uri | http://hdl.handle.net/11693/111800 | |
dc.language.iso | English | en_US |
dc.publisher | Springer Science and Business Media B.V. | en_US |
dc.relation.isversionof | https://dx.doi.org/10.1007/s11203-021-09253-5 | en_US |
dc.source.title | Statistical Inference for Stochastic Processes | en_US |
dc.subject | Asymptotic optimality | en_US |
dc.subject | Change point detection | en_US |
dc.subject | Hidden Markov models | en_US |
dc.subject | Hypothesis testing | en_US |
dc.subject | Optimal stopping | en_US |
dc.title | Detection and identification of changes of hidden Markov chains: Asymptotic theory | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Detection_and_identification_of_changes_of_hidden_Markov_chains_asymptotic_theory.pdf
- Size:
- 867.59 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: