Iterative-improvement-based declustering heuristics for multi-disk databases

buir.contributor.authorAykanat, Cevdet
dc.citation.epage70en_US
dc.citation.issueNumber1en_US
dc.citation.spage47en_US
dc.citation.volumeNumber30en_US
dc.contributor.authorKoyutürk, M.en_US
dc.contributor.authorAykanat, Cevdeten_US
dc.date.accessioned2015-07-28T12:06:13Z
dc.date.available2015-07-28T12:06:13Zen_US
dc.date.issued2005en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractData declustering is an important issue for reducing query response times in multi-disk database systems. In this paper, we propose a declustering method that utilizes the available information on query distribution, data distribution, data-item sizes, and disk capacity constraints. The proposed method exploits the natural correspondence between a data set with a given query distribution and a hypergraph. We define an objective function that exactly represents the aggregate parallel query-response time for the declustering problem and adapt the iterative-improvement-based heuristics successfully used in hypergraph partitioning to this objective function. We propose a two-phase algorithm that first obtains an initial K-way declustering by recursively bipartitioning the data set, then applies multi-way refinement on this declustering. We provide effective gain models and efficient implementation schemes for both phases. The experimental results on a wide range of realistic data sets show that the proposed method provides a significant performance improvement compared with the state-of-the-art declustering strategy based on similarity-graph partitioning.en_US
dc.identifier.doi10.1016/j.is.2003.08.003en_US
dc.identifier.issn0306-4379en_US
dc.identifier.issn1873-6076en_US
dc.identifier.urihttp://hdl.handle.net/11693/13411en_US
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.is.2003.08.003en_US
dc.source.titleInformation Systemsen_US
dc.subjectParallel database systemsen_US
dc.subjectDeclusteringen_US
dc.subjectHypergraph partitioningen_US
dc.subjectIterative improvementen_US
dc.subjectWeighted similarity graphen_US
dc.subjectMaxcut graph partitioningen_US
dc.titleIterative-improvement-based declustering heuristics for multi-disk databasesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.is.2003.08.003.pdf
Size:
527.16 KB
Format:
Adobe Portable Document Format
Description:
Full printable version