Thermal tuning of infrared resonant absorbers based on hybrid gold-VO<inf>2</inf> nanostructures

Date
2015
Authors
Kocer H.
Butun, S.
Banar, B.
Wang, K.
Tongay, S.
Wu J.
Aydin, K.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Applied Physics Letters
Print ISSN
0003-6951
Electronic ISSN
Publisher
American Institute of Physics Inc.
Volume
106
Issue
16
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO2) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO2 nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO2 (68°C). Phase change materials such as VO2 deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity. © 2015 AIP Publishing LLC.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)