Stability analysis of cell dynamics in leukemia
buir.contributor.author | Özbay, Hitay | |
dc.citation.epage | 234 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 203 | en_US |
dc.citation.volumeNumber | 7 | en_US |
dc.contributor.author | Özbay, Hitay | en_US |
dc.contributor.author | Bonnet, C. | en_US |
dc.contributor.author | Benjelloun, H. | en_US |
dc.contributor.author | Clairambault, J. | en_US |
dc.date.accessioned | 2016-02-08T09:48:26Z | |
dc.date.available | 2016-02-08T09:48:26Z | |
dc.date.issued | 2012 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:48:26Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012 | en |
dc.identifier.doi | 10.1051/mmnp/20127109 | en_US |
dc.identifier.issn | 0973-5348 | |
dc.identifier.uri | http://hdl.handle.net/11693/21590 | |
dc.language.iso | English | en_US |
dc.publisher | E D P Sciences | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1051/mmnp/20127109 | en_US |
dc.source.title | Mathematical Modelling of Natural Phenomena | en_US |
dc.subject | Absolute stability | en_US |
dc.subject | Acute leukemia | en_US |
dc.subject | Distributed delays | en_US |
dc.subject | Global stability | en_US |
dc.subject | Absolute stability | en_US |
dc.subject | Acute leukemia | en_US |
dc.subject | Cell dynamics | en_US |
dc.subject | Distributed delays | en_US |
dc.subject | Global stability | en_US |
dc.subject | Linearized systems | en_US |
dc.subject | Local asymptotic stability | en_US |
dc.subject | Nonlinear small gain | en_US |
dc.subject | Numerical example | en_US |
dc.subject | Positive equilibrium | en_US |
dc.subject | Stability analysis | en_US |
dc.subject | Stability condition | en_US |
dc.subject | Sub-systems | en_US |
dc.subject | System modeling | en_US |
dc.subject | Asymptotic stability | en_US |
dc.subject | Diseases | en_US |
dc.subject | Dynamics | en_US |
dc.subject | Nonlinear feedback | en_US |
dc.subject | Stability criteria | en_US |
dc.subject | System stability | en_US |
dc.title | Stability analysis of cell dynamics in leukemia | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Stability analysis of cell dynamics in leukemia.pdf
- Size:
- 724.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version