Stability analysis of cell dynamics in leukemia

buir.contributor.authorÖzbay, Hitay
dc.citation.epage234en_US
dc.citation.issueNumber1en_US
dc.citation.spage203en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorÖzbay, Hitayen_US
dc.contributor.authorBonnet, C.en_US
dc.contributor.authorBenjelloun, H.en_US
dc.contributor.authorClairambault, J.en_US
dc.date.accessioned2016-02-08T09:48:26Z
dc.date.available2016-02-08T09:48:26Z
dc.date.issued2012en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractIn order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:48:26Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1051/mmnp/20127109en_US
dc.identifier.issn0973-5348
dc.identifier.urihttp://hdl.handle.net/11693/21590
dc.language.isoEnglishen_US
dc.publisherE D P Sciencesen_US
dc.relation.isversionofhttp://dx.doi.org/10.1051/mmnp/20127109en_US
dc.source.titleMathematical Modelling of Natural Phenomenaen_US
dc.subjectAbsolute stabilityen_US
dc.subjectAcute leukemiaen_US
dc.subjectDistributed delaysen_US
dc.subjectGlobal stabilityen_US
dc.subjectAbsolute stabilityen_US
dc.subjectAcute leukemiaen_US
dc.subjectCell dynamicsen_US
dc.subjectDistributed delaysen_US
dc.subjectGlobal stabilityen_US
dc.subjectLinearized systemsen_US
dc.subjectLocal asymptotic stabilityen_US
dc.subjectNonlinear small gainen_US
dc.subjectNumerical exampleen_US
dc.subjectPositive equilibriumen_US
dc.subjectStability analysisen_US
dc.subjectStability conditionen_US
dc.subjectSub-systemsen_US
dc.subjectSystem modelingen_US
dc.subjectAsymptotic stabilityen_US
dc.subjectDiseasesen_US
dc.subjectDynamicsen_US
dc.subjectNonlinear feedbacken_US
dc.subjectStability criteriaen_US
dc.subjectSystem stabilityen_US
dc.titleStability analysis of cell dynamics in leukemiaen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stability analysis of cell dynamics in leukemia.pdf
Size:
724.1 KB
Format:
Adobe Portable Document Format
Description:
Full printable version