Theoretical study of hydrogen adsorption in Ti-decorated capped carbon nanotube
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We present ab initio study using dispersion-corrected density functional theory calculations to investigate the hydrogen interaction with Ti-coated, one end closed, single-walled carbon nanotube (SWCNT). Our results demonstrate that a single Ti atom binds up to five hydrogen molecules on SWCNT cap top, whereas adsorption of four hydrogen molecules is energetically more favourable. The analyses fromadsorption energy profile, highest occupied molecular orbital–lowest unoccupied molecular orbital gap and Mulliken charge distribution show contrast in first hydrogen molecule adsorption compared with the rest of four configurations. This is clearly due to the strongly different bonding nature of first hydrogen adsorption among others, between hydrogen molecules and Ti-coated SWCNT. These results not only support our understanding of adsorption nature of hydrogen in Ti-coated SWCNTs but also suggest new directions for smart storage techniques.