2 + 1 KdV(N) equations
dc.citation.issueNumber | 8 | en_US |
dc.citation.volumeNumber | 52 | en_US |
dc.contributor.author | Gürses, M. | en_US |
dc.contributor.author | Pekcan, A. | en_US |
dc.date.accessioned | 2016-02-08T09:51:40Z | |
dc.date.available | 2016-02-08T09:51:40Z | |
dc.date.issued | 2011 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We present some nonlinear partial differential equations in 2 + 1-dimensions derived from the KdV equation and its symmetries. We show that all these equations have the same 3-soliton solution structures. The only difference in these solutions are the dispersion relations. We also show that they possess the Painlevé property. © 2011 American Institute of Physics. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:51:40Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011 | en |
dc.identifier.doi | 10.1063/1.3629528 | en_US |
dc.identifier.eissn | 1089-7658 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.uri | http://hdl.handle.net/11693/21828 | |
dc.language.iso | English | en_US |
dc.publisher | American Institute of Physics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.3629528 | en_US |
dc.source.title | Journal of Mathematical Physics | en_US |
dc.title | 2 + 1 KdV(N) equations | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2_+_1_KdV_(_N_)_equations.pdf
- Size:
- 100.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- View / Open Files