2 + 1 KdV(N) equations

dc.citation.issueNumber8en_US
dc.citation.volumeNumber52en_US
dc.contributor.authorGürses, M.en_US
dc.contributor.authorPekcan, A.en_US
dc.date.accessioned2016-02-08T09:51:40Z
dc.date.available2016-02-08T09:51:40Z
dc.date.issued2011en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe present some nonlinear partial differential equations in 2 + 1-dimensions derived from the KdV equation and its symmetries. We show that all these equations have the same 3-soliton solution structures. The only difference in these solutions are the dispersion relations. We also show that they possess the Painlevé property. © 2011 American Institute of Physics.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:51:40Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1063/1.3629528en_US
dc.identifier.eissn1089-7658
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11693/21828
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.3629528en_US
dc.source.titleJournal of Mathematical Physicsen_US
dc.title2 + 1 KdV(N) equationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2_+_1_KdV_(_N_)_equations.pdf
Size:
100.56 KB
Format:
Adobe Portable Document Format
Description:
View / Open Files