High-speed GaAs-based resonant-cavity-enhanced 1.3-μm photodetector

Date
2000
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Proceedings of SPIE Vol. 3948, Photodetectors: Materials and Devices V
Print ISSN
0277-786X
Electronic ISSN
Publisher
SPIE
Volume
3948
Issue
Pages
170 - 178
Language
English
Type
Conference Paper
Journal Title
Journal ISSN
Volume Title
Series
Abstract

High-speed photodetectors operating at 1.3 and 1.55 μm are important for long distance fiber optic based telecommunication applications. We fabricated GaAs based photodetectors operating at 1.3 μm that depend on internal photoemission as the absorption mechanism. Detectors using internal photoemission have usually very low quantum efficiency. We increased the quantum efficiency using resonant cavity enhancement effect. Resonant cavity enhancement effect also introduced wavelength selectivity which is very important for wavelength division multiplexing based communication systems. The top-illuminated Schottky photodiodes were fabricated by a microwave-compatible monolithic microfabrication process. The top metal layer serves as the top mirror of the Fabry-Perot cavity. Bottom mirror is composed of 15 pair AlAs/GaAs distributed Bragg reflector. We have used transfer matrix method to simulate the optical properties of the photodiodes. Our room temperature quantum efficiency measurement and simulation of our photodiodes at zero bias show that, we have achieved 9 fold enhancement in the quantum efficiency, with respect to a similar photodetector without a cavity. We also investigated the effect of reverse bias on quantum efficiency. Our devices are RC time constant limited with a predicted 3-dB bandwidth of 70 GHz.

Course
Other identifiers
Book Title
Keywords
Photodetector, Internal-photoemission, RCE effect, Infrared, Photoemission, Fiber communication, Semiconducting aluminum compounds, Semiconducting gallium arsenide, Wavelength division multiplexing
Citation
Published Version (Please cite this version)