Pricing and revenue management: the value of coordination
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The integration of systems for pricing and revenue management must trade off potential revenue gains against significant practical and technical challenges. This dilemma motivates us to investigate the value of coordinating decisions on prices and capacity allocation in a stylized setting. We propose two pairs of sequential policies for making static decisions - on pricing and revenue management - that differ in their degree of integration (hierarchical versus coordinated) and their pricing inputs (deterministic versus stochastic). For a large class of stochastic, price-dependent demand models, we prove that these four heuristics admit tractable solutions satisfying intuitive sensitivity properties. We further evaluate numerically the performance of these policies relative to a fully coordinated model, which is generally intractable. We find it interesting that near-optimal performance is usually achieved by a simple hierarchical policy that sets prices first, based on a nonnested stochastic model, and then uses these prices to optimize nested capacity allocation. This tractable policy largely outperforms its counterpart based on a deterministic pricing model. Jointly optimizing price and allocation decisions for the high-end segment improves performance, but the largest revenue benefits stem from adjusting prices to account for demand risk.