Many-body properties of one-dimensional systems with contact interaction

Date

1999

Editor(s)

Advisor

Tanatar, Bilal

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
5
views
19
downloads

Series

Abstract

The one-dimensional electron systems are attracting a lot of interest because of theoretical and technological implications. These systems are usually fabricated on two-dimensional electron systems by confining the electrons in one of the remaining free directions by using nanolithographic techniques. There are also naturally occuring orgnanic conductors such as TTF-TCNQ whose conductivity is thought to be largely one-dimensional. The one-dimensional electron systems are important theoretically since they constitute one of the simplest many-body systems of interacting fermions with properties very different from three- and two-dimensional systems. The one-dimensional electron gas with a repulsive contact interaction model can be a useful paradigm to investigate these peculiar many-body properties. The system of bosons are also very interesting because of the macroscopic effects such as Bose-Einstein condensation and superfluidity. Another motivation to study one-dimensional Bose gas is the theoretical thought that one-dimensional electron gas gives boson gas characteristics. This work is based on the study of correlation effects in one-dimensional electron and boson gases with repulsive contact interactions. The correlation effects are described by a localfield correction which takes into account the short-range correlations. We use Vashishta-Singwi approach to calculate static correlation effects in onedimensional electron and boson gases. We find that Vashishta-Singwi approach gives better results than the other approximations. We also study the dynamical correlation effects in a one-dimensional electron gas with contact interaction within the quantum version of the self-consistent scheme of Singwi et al. (STLS) We calculate frequency dependent local-field corrections for both density and spin fluctuations. We investigate the structure factors, spin-dependent pair-correlation functions, and collective excitations. We compare our results with other theoretical approaches.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type