Elliptic solutions of stationary axisymmetric Einstein equations
dc.citation.epage | 2613 | en_US |
dc.citation.issueNumber | 12 | en_US |
dc.citation.spage | 2587 | en_US |
dc.citation.volumeNumber | 10 | en_US |
dc.contributor.author | Korotkin, D.A. | en_US |
dc.date.accessioned | 2016-02-08T10:53:53Z | |
dc.date.available | 2016-02-08T10:53:53Z | |
dc.date.issued | 1993 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | In this paper we present a more transparent version of an earlier construction of genus g algebraic-geometric solutions of the Einstein equation. For one of the metric coefficients we obtain a new expression that allows us to construct the coefficient in terms of derivatives of the function Psi ( lambda ) (solution of associative linear system). Finally, we proceed with an analysis of the two simplest genus 1 (elliptic) solutions. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:53:53Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1993 | en |
dc.identifier.doi | 10.1088/0264-9381/10/12/018 | en_US |
dc.identifier.issn | 0264-9381 | |
dc.identifier.uri | http://hdl.handle.net/11693/26022 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1088/0264-9381/10/12/018 | en_US |
dc.source.title | Classical and Quantum Gravity | en_US |
dc.title | Elliptic solutions of stationary axisymmetric Einstein equations | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Elliptic solutions of stationary axisymmetric Einstein equations.pdf
- Size:
- 9.54 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version