Row generation techniques for approximate solution of linear programming problems
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
In this study, row generation techniques are applied on general linear programming problems with a very large number of constraints with respect to the problem dimension. A lower bound is obtained for the change in the objective value caused by the generation of a specific row. To achieve row selection that results in a large shift in the feasible region and the objective value at each row generation iteration, the lower bound is used in the comparison of row generation candidates. For a warm-start to the solution procedure, an effective selection of the subset of constraints that constitutes the initial LP is considered. Several strategies are discussed to form such a small subset of constraints so as to obtain an initial solution close to the feasible region of the original LP. Approximation schemes are designed and compared to make possible the termination of row generation at a solution in the proximity of an optimal solution of the input LP. The row generation algorithm presented in this study, which is enhanced with a warm-start strategy and an approximation scheme is implemented and tested for computation time and the number of rows generated. Two efficient primal simplex method variants are used for benchmarking computation times, and the row generation algorithm appears to perform better than at least one of them especially when number of constraints is large.