Online adaptive hierarchical space partitioning classifier

dc.citation.epage1240en_US
dc.citation.spage1237en_US
dc.contributor.authorKılıç, O. Fatihen_US
dc.contributor.authorVanlı, N. D.en_US
dc.contributor.authorÖzkan, Hüseyinen_US
dc.contributor.authorDelibalta, İ.en_US
dc.contributor.authorKozat, Süleyman Serdaren_US
dc.coverage.spatialZonguldak, Turkeyen_US
dc.date.accessioned2018-04-12T11:48:27Z
dc.date.available2018-04-12T11:48:27Z
dc.date.issued2016en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 16-19 May 2016en_US
dc.descriptionConference Name: IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016en_US
dc.description.abstractWe introduce an on-line classification algorithm based on the hierarchical partitioning of the feature space which provides a powerful performance under the defined empirical loss. The algorithm adaptively partitions the feature space and at each region trains a different classifier. As a final classification result algorithm adaptively combines the outputs of these basic models which enables it to create a linear piecewise classifier model that can work well under highly non-linear complex data. The introduced algorithm also have scalable computational complexity that scales linearly with dimension of the feature space, depth of the partitioning and number of processed data. Through experiments we show that the introduced algorithm outperforms the state-of-the-art ensemble techniques over various well-known machine learning data sets.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:48:27Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1109/SIU.2016.7495970en_US
dc.identifier.urihttp://hdl.handle.net/11693/37701
dc.language.isoTurkishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/SIU.2016.7495970en_US
dc.source.titleProceedings of the IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016en_US
dc.subjectAdaptive treesen_US
dc.subjectClassificationen_US
dc.subjectComputational efficiencyen_US
dc.subjectOn-line learningen_US
dc.titleOnline adaptive hierarchical space partitioning classifieren_US
dc.title.alternativeUyarlanır uzay bölümleme ile çevrimiçi sınıflandırmaen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Online adaptive hierarchical space partitioning classifier [Uyarlanlr Uzay B6ltimleme ile C;evrimi~i Slnlfiandlrma].pdf
Size:
3.75 MB
Format:
Adobe Portable Document Format
Description:
Full printable version