Adaptive digital predistortion for power amplifier linearization

Date
2008
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

High power amplification of linear modulation schemes which exhibit fluctuating envelopes, invariably leads to the generation of distortion and intermodulation products. In order to avoid these effects, maintaining both power and spectral efficiency, it is necessary to use linearization techniques. By using linearization techniques, the amplifier can be operated near the saturation with good efficiency and linearity. The technique proposed here is predistortion based on a look-up table (LUT) method using input and output signal envelopes. The predistortion is implemented using a LUT and an address generation block that selects the appropriate coefficient from the LUT, given the magnitude of the input signal. The testing of the predistorter is done by using a baseband system model which consists of a 16-QAM modulator, an upsampler, a raised cosine filter, the predistorter and a baseband behavioural amplifier model. The performance of the predistorter with a new LUT update method is evaluated in terms of power efficiency and spectrum efficiency. MATLAB simulations show that to obtain up to 25-30 dB improvement in power spectrum is possible and sufficiently large LUT size is needed to reduce the background noise level. Furthermore, the performance of the predistorter in the case of an amplifier with memory is also investigated. The algorithms have been implemented on an FPGA chip. The performance of the system is as predicted in MATLAB simulations.

Course
Other identifiers
Book Title
Keywords
Aptive Digital Predistortion, Look-up Table Predistortion, Linearization, Amplifier Nonlinearity, Spectrum Efficiency, FPGA
Citation
Published Version (Please cite this version)