Generic initial ideals of modular polynomial invariants

buir.advisorSezer, Müfit
dc.contributor.authorDanış, Bekir
dc.date.accessioned2020-07-14T08:38:02Z
dc.date.available2020-07-14T08:38:02Z
dc.date.copyright2020-07
dc.date.issued2020-07
dc.date.submitted2020-07-13
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references (leaves 40-41).en_US
dc.description.abstractWe study the generic initial ideals (gin) of certain ideals that arise in modular invariant theory. For all the cases where an explicit generating set is known, we calculate the generic initial ideal of the Hilbert ideal of a cyclic group of prime order for all monomial orders. We also clarify gin for the Klein four group and note that its Hilbert ideals are Borel fixed with certain orderings of the variables. In all the situations we consider, there is a monomial order such that the gin of the Hilbert ideal is equal to its initial ideal. Along the way we show that gin respects a permutation of the variables in the monomial order.en_US
dc.description.statementofresponsibilityby Bekir Danışen_US
dc.format.extentvi, 41 leaves ; 30 cm.en_US
dc.identifier.itemidB155598
dc.identifier.urihttp://hdl.handle.net/11693/53927
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneric initial idealsen_US
dc.subjectModular polynomial invariantsen_US
dc.titleGeneric initial ideals of modular polynomial invariantsen_US
dc.title.alternativeModüler polinom değişmezlerinin generik baş terim ideallerien_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10343564.pdf
Size:
289.98 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: