Strongly clean matrices over power series
dc.citation.epage | 396 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 387 | en_US |
dc.citation.volumeNumber | 56 | en_US |
dc.contributor.author | Chen, H. | en_US |
dc.contributor.author | Kose, H. | en_US |
dc.contributor.author | Kurtulmaz, Y. | en_US |
dc.date.accessioned | 2018-04-12T10:49:05Z | |
dc.date.available | 2018-04-12T10:49:05Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | An n × n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]]) . We prove, in this note, that A(x) ∈ Mn ( R[[x]]) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:49:05Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.5666/KMJ.2016.56.2.387 | en_US |
dc.identifier.eissn | 0454-8124 | |
dc.identifier.issn | 1225-6951 | |
dc.identifier.uri | http://hdl.handle.net/11693/36697 | |
dc.language.iso | English | en_US |
dc.publisher | Kyungpook National University | en_US |
dc.relation.isversionof | http://dx.doi.org/10.5666/KMJ.2016.56.2.387 | en_US |
dc.source.title | Kyungpook Mathematical Journal | en_US |
dc.subject | Characteristic polynomial | en_US |
dc.subject | Power series | en_US |
dc.subject | Strongly clean matrix | en_US |
dc.title | Strongly clean matrices over power series | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Strongly clean matrices over power series.pdf
- Size:
- 161.87 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version