Strongly clean matrices over power series

dc.citation.epage396en_US
dc.citation.issueNumber2en_US
dc.citation.spage387en_US
dc.citation.volumeNumber56en_US
dc.contributor.authorChen, H.en_US
dc.contributor.authorKose, H.en_US
dc.contributor.authorKurtulmaz, Y.en_US
dc.date.accessioned2018-04-12T10:49:05Z
dc.date.available2018-04-12T10:49:05Z
dc.date.issued2016en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractAn n × n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn ( R[[x]]) . We prove, in this note, that A(x) ∈ Mn ( R[[x]]) is strongly clean if and only if A(0) ∈ Mn(R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:49:05Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.5666/KMJ.2016.56.2.387en_US
dc.identifier.eissn0454-8124
dc.identifier.issn1225-6951
dc.identifier.urihttp://hdl.handle.net/11693/36697
dc.language.isoEnglishen_US
dc.publisherKyungpook National Universityen_US
dc.relation.isversionofhttp://dx.doi.org/10.5666/KMJ.2016.56.2.387en_US
dc.source.titleKyungpook Mathematical Journalen_US
dc.subjectCharacteristic polynomialen_US
dc.subjectPower seriesen_US
dc.subjectStrongly clean matrixen_US
dc.titleStrongly clean matrices over power seriesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strongly clean matrices over power series.pdf
Size:
161.87 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version