A novel method for thermal conductivity measurement of two dimensional materials

Date
2019-09
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

Thermal conductivity is a quantity which governs the heat transfer in a material. After increasing importance of efficiency in power generation systems and cooling mechanisms in micro-structures, many measurement methods have been developed to explore the thermal conductivity in micro and nano-sized materials. However, complexity in experimental setups, difficulties in the fabrication of devices required for measurements, and lacking exact solutions to thermal equations limit the usability of the methods to a class of materials. It is particularly challenging to study atomically thin metallic materials. To tackle this challenge, we have developed a new thermal conductivity measurement method based on the temperature dependent electrical resistance change and analyzed our method analytically and numerically by finite element method. We applied our method to 2H-TaS2 and found thermal conductivity as 9.55 1.27 W/m.K. Thermal conductivity value of TaS2, a metallic transition metal dichalcogenide was measured for the first time. This is supported by Wiedemann-Franz law and thermal conductivity of similar materials such as 2H-TaSe2 and 1T-TaS2. The method can be applied to semiconducting thin materials as well and is superior to other methods in various ways.

Course
Other identifiers
Book Title
Keywords
Thermal conductivity, 2D materials, Temperature dependent resistance change, Finite element method, Heat equation
Citation
Published Version (Please cite this version)