Recognition of occupational therapy exercises and detection of compensation mistakes for cerebral palsy

Available
The embargo period has ended, and this item is now available.

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
48
downloads

Citation Stats

Series

Abstract

Depth camera-based virtual rehabilitation systems are gaining attention in occupational therapy for cerebral palsy patients. When developing such a system, domain-specific exercise recognition is vital. To design such a gesture recognition method, some obstacles need to be overcome: detection of gestures not related to the defined exercise set and recognition of incorrect exercises performed by the patients to compensate for their lack of ability. We propose a framework based on hidden Markov models for the recognition of upper extremity functional exercises. We determine critical compensation mistakes together with restrictions for classifying these mistakes with the help of occupational therapists. We first eliminate undefined gestures by evaluating two models that produce adaptive threshold values. Then we utilize specific negative models based on feature thresholding and train them for each exercise to detect compensation mistakes. We perform various tests using our method in a laboratory environment under the supervision of occupational therapists.

Source Title

Journal of Visual Communication and Image Representation

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English