The effect of Si(x)N(y) interlayer on the quality of GaN epitaxial layers grown on Si(111) substrates by MOCVD

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage477en_US
dc.citation.issueNumber2en_US
dc.citation.spage472en_US
dc.citation.volumeNumber9en_US
dc.contributor.authorArslan, E.en_US
dc.contributor.authorOzturk, M. K.en_US
dc.contributor.authorOzcelik, S.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2015-07-28T12:06:24Z
dc.date.available2015-07-28T12:06:24Z
dc.date.issued2008-04-27en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(111) substrates by metal-organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(111) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(111) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 mu m. Secondly, the effect of in situ substrate nitridation and the insertion of an Si(x)N(y) intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the Si(x)N(y) layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without Si(x)N(y) layer) and B (with Si(x)N(y) layer on Si(111)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0002) diffraction from the GaN epilayer of the sample B in omega-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a Si(x)N(y) intermediate layer significantly improved the optical and structural properties. In sample C (with Si(x)N(y) layer on Al(0.11)Ga(0.89)N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:06:24Z (GMT). No. of bitstreams: 1 10.1016-j.cap.2008.04.008.pdf: 1319735 bytes, checksum: e025e9f663fee5faa48a5b85b8be38c8 (MD5)en
dc.identifier.doi10.1016/j.cap.2008.04.008en_US
dc.identifier.issn1567-1739
dc.identifier.urihttp://hdl.handle.net/11693/13453
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cap.2008.04.008en_US
dc.source.titleCurrent Applied Physicsen_US
dc.subjectB1. Ganen_US
dc.subjectB1. Aln layeren_US
dc.subjectB1. Step graded AlGaNen_US
dc.subjectA3. MOCVDen_US
dc.subjectB1. Silicon substratesen_US
dc.subjectB1. intermediate Layeren_US
dc.titleThe effect of Si(x)N(y) interlayer on the quality of GaN epitaxial layers grown on Si(111) substrates by MOCVDen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.cap.2008.04.008.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description:
Full printable version