Shared-per-wavelength asynchronous optical packet switching: a comparative analysis
dc.citation.epage | 2181 | en_US |
dc.citation.issueNumber | 13 | en_US |
dc.citation.spage | 2166 | en_US |
dc.citation.volumeNumber | 54 | en_US |
dc.contributor.author | Akar, N. | en_US |
dc.contributor.author | Rafaelli, C. | en_US |
dc.contributor.author | Savi, M. | en_US |
dc.contributor.author | Karasan, E. | en_US |
dc.date.accessioned | 2015-07-28T11:59:48Z | |
dc.date.available | 2015-07-28T11:59:48Z | |
dc.date.issued | 2010-03-23 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | This paper compares four different architectures for sharing wavelength converters in asynchronous optical packet switches with variable-length packets. The first two architectures are the well-known shared-per-node (SPN) and shared-per-link (SPL) architectures, while the other two are the shared-per-input-wavelength (SPIW) architecture, recently proposed as an optical switch architecture in synchronous context only, which is extended here to the asynchronous scenario, and an original scheme called shared-per-output-wavelength (SPOW) architecture that we propose in the current article. We introduce novel analytical models to evaluate packet loss probabilities for SPIW and SPOW architectures in asynchronous context based on Markov chains and fixed-point iterations for the particular scenario of Poisson input traffic and exponentially distributed packet lengths. The models also account for unbalanced traffic whose impact is thoroughly studied. These models are validated by comparison with simulations which demonstrate that they are remarkably accurate. In terms of performance, the SPOW scheme provides blocking performance very close to the SPN scheme while maintaining almost the same complexity of the space switch, and employing less expensive wavelength converters. On the other hand, the SPIW scheme allows less complexity in terms of number of optical gates required, while it substantially outperforms the widely accepted SPL scheme. The authors therefore believe that the SPIW and SPOW schemes are promising alternatives to the conventional SPN and SPL schemes for the implementation of next-generation optical packet switching systems. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T11:59:48Z (GMT). No. of bitstreams: 1 10.1016-j.comnet.2010.03.008.pdf: 738038 bytes, checksum: 165c496e1ddb3bb900811da2937889d4 (MD5) | en |
dc.description.sponsorship | European Commission (EC) | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TÜBiTAK) | en_US |
dc.identifier.doi | 10.1016/j.comnet.2010.03.008 | en_US |
dc.identifier.issn | 1389-1286 | |
dc.identifier.uri | http://hdl.handle.net/11693/12038 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.comnet.2010.03.008 | en_US |
dc.source.title | Computer Networks | en_US |
dc.subject | Optical packet switching | en_US |
dc.subject | Wavelength conversion | en_US |
dc.subject | Shared-per-wavelength optical architecture | en_US |
dc.subject | Markov chains | en_US |
dc.subject | Fixed-point analysis | en_US |
dc.title | Shared-per-wavelength asynchronous optical packet switching: a comparative analysis | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1016-j.comnet.2010.03.008.pdf
- Size:
- 720.74 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version