Levy walk evolution for global optimization
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 538 | en_US |
dc.citation.spage | 537 | en_US |
dc.contributor.author | Urfalıoğlu, Onay | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.contributor.author | Kuruoğlu, E. E. | en_US |
dc.coverage.spatial | Atlanta, GA, USA | |
dc.date.accessioned | 2016-02-08T11:35:00Z | |
dc.date.available | 2016-02-08T11:35:00Z | |
dc.date.issued | 2008-07 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 12-16 July, 2008 | |
dc.description | Conference name: GECCO '08 Proceedings of the 10th annual conference on Genetic and evolutionary computation | |
dc.description.abstract | A novel evolutionary global optimization approach based on adaptive covariance estimation is proposed. The proposed method samples from a multivariate Levy Skew Alpha-Stable distribution with the estimated covariance matrix to realize a random walk and so to generate new solution candidates in the mutation step. The proposed method is compared to the popular Differential Evolution method, which is one of the best general evolutionary global optimizers available. Experimental results indicate that the proposed approach yields a general improvement in the required number of function evaluations to solve global optimization problems. Especially, as shown in experiments, the underlying heavy tailed alpha-stable distribution enables a considerably more effective global search in more complex problems. Track: Evolution Strategies. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:35:00Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008 | en |
dc.identifier.doi | 10.1145/1389095.1389200 | |
dc.identifier.uri | http://hdl.handle.net/11693/26760 | |
dc.language.iso | English | en_US |
dc.publisher | ACM | |
dc.relation.isversionof | https://doi.org/10.1145/1389095.1389200 | |
dc.source.title | GECCO'08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation 2008 | en_US |
dc.subject | Alpha-stable distribution | en_US |
dc.subject | Evolutionary optimization | en_US |
dc.subject | Global optimization | en_US |
dc.subject | Heavy tailed distribution | en_US |
dc.subject | Levy walk | en_US |
dc.subject | Covariance matrix | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Function evaluation | en_US |
dc.subject | Optimization | en_US |
dc.subject | Alpha-stable distributions | en_US |
dc.subject | Complex problems | en_US |
dc.subject | Covariance estimations | en_US |
dc.subject | Differential evolution methods | en_US |
dc.subject | Evolution strategies | en_US |
dc.subject | Evolutionary global optimizations | en_US |
dc.subject | Global optimization problems | en_US |
dc.subject | Global searches | en_US |
dc.subject | New solutions | en_US |
dc.subject | Optimizers | en_US |
dc.subject | Random walks | en_US |
dc.title | Levy walk evolution for global optimization | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Levy_walk_evolution_for_global_optimization.pdf
- Size:
- 168.35 KB
- Format:
- Adobe Portable Document Format
- Description: