Piatetski-shapir prime number theorem and chebotarev density theorem
Date
2015-07
Authors
Editor(s)
Advisor
Güloğlu, Ahmet Muhtar
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
6
views
views
49
downloads
downloads
Series
Abstract
Let K be a nite Galois extension of the eld Q of rational numbers. In this thesis, we derive an asymptotic formula for the number of the Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincide with any given conjugacy class in the Galois group of K=Q. Applying this theorem to appropriate eld extensions, we conclude that there are in nitely many Piatetski-Shapiro primes lying in a given arithmetic progresion and furthermore there are in nitely many primes that can be expressed as a sum of a square and a xed positive integer multiple of another square.
Source Title
Publisher
Course
Other identifiers
Book Title
Degree Discipline
Mathematics
Degree Level
Doctoral
Degree Name
Ph.D. (Doctor of Philosophy)
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
English