Data modeling and querying for video databases
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
With the advances in information technology, the amount of multimedia data captured, produced and stored is increasing rapidly. As a consequence, multimedia content is widely used for many applications in today’s world, and hence, a need for organizing this data and accessing it from repositories with vast amount of information has been a driving stimulus both commercially and academically. In compliance with this inevitable trend, first image and especially later video database management systems have attracted a great deal of attention since traditional database systems are not suitable to be used for multimedia data. In this thesis, a novel architecture for a video database system is proposed. The architecture is original in that it provides full support for spatio-temporal queries that contain any combination of spatial, temporal, object-appearance, external-predicate, trajectory-projection and similarity-based object-trajectory conditions by a rule-based system built on a knowledge-base, while utilizing an object-relational database to respond to semantic (keyword, event/activity and category-based) and low-level (color, shape and texture) video queries. Research results obtained from this thesis work have been realized by a prototype video database management system, which we call BilVideo. Its tools, Fact-Extractor and Video-Annotator, its Web-based visual query interface and its SQL-like textual query language are presented. Moreover, the query processor of BilVideo and our spatio-temporal query processing strategy are also discussed.